An Improved Naive Bayes Classifier-Based Noise Detection Technique for Classifying User Phone Call Behavior

  • Iqbal H. Sarker
  • Muhammad Ashad Kabir
  • Alan Colman
  • Jun Han
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 845)


The presence of noisy instances in mobile phone data is a fundamental issue for classifying user phone call behavior (i.e., accept, reject, missed and outgoing), with many potential negative consequences. The classification accuracy may decrease and the complexity of the classifiers may increase due to the number of redundant training samples. To detect such noisy instances from a training dataset, researchers use naive Bayes classifier (NBC) as it identifies misclassified instances by taking into account independence assumption and conditional probabilities of the attributes. However, some of these misclassified instances might indicate usages behavioral patterns of individual mobile phone users. Existing naive Bayes classifier based noise detection techniques have not considered this issue and, thus, are lacking in classification accuracy. In this paper, we propose an improved noise detection technique based on naive Bayes classifier for effectively classifying users’ phone call behaviors. In order to improve the classification accuracy, we effectively identify noisy instances from the training dataset by analyzing the behavioral patterns of individuals. We dynamically determine a noise threshold according to individual’s unique behavioral patterns by using both the naive Bayes classifier and Laplace estimator. We use this noise threshold to identify noisy instances. To measure the effectiveness of our technique in classifying user phone call behavior, we employ the most popular classification algorithm (e.g., decision tree). Experimental results on the real phone call log dataset show that our proposed technique more accurately identifies the noisy instances from the training datasets that leads to better classification accuracy.


Mobile data mining Noise analysis Naive Bayes classifier Decision tree Classification Laplace estimator Predictive analytics Machine learning User behavior modeling 


  1. 1.
    Cestnik, B., et al.: Estimating probabilities: a crucial task in machine learning. In: ECAI, vol. 90, pp. 147–149 (1990)Google Scholar
  2. 2.
    Chen, J., Huang, H., Tian, S., Qu, Y.: Feature selection for text classification with Naïve Bayes. Expert Syst. Appl. 36(3), 5432–5435 (2009)CrossRefGoogle Scholar
  3. 3.
    Daza, L., Acuna, E.: An algorithm for detecting noise on supervised classification. In: Proceedings of WCECS 2007, the 1st World Conference on Engineering and Computer Science, pp. 701–706 (2007)Google Scholar
  4. 4.
    Eagle, N., Pentland, A., Lazer, D.: Infering social network structure using mobile phone data. Proc. Natl. Acad. Sci. (2006)Google Scholar
  5. 5.
    Farid, D.M., Zhang, L., Rahman, C.M., Hossain, M.A., Strachan, R.: Hybrid decision tree and Naïve Bayes classifiers for multi-class classification tasks. Expert Syst. Appl. 41(4), 1937–1946 (2014)CrossRefGoogle Scholar
  6. 6.
    Frénay, B., Verleysen, M.: Classification in the presence of label noise: a survey. IEEE Trans. Neural Netw. Learn. Syst. 25(5), 845–869 (2014)CrossRefGoogle Scholar
  7. 7.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1), 10–18 (2009)CrossRefGoogle Scholar
  8. 8.
    Halvey, M., Keane, M.T., Smyth, B.: Time based segmentation of log data for user navigation prediction in personalization. In: Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence, pp. 636–640. IEEE Computer Society (2005)Google Scholar
  9. 9.
    Han, J., Pei, J., Kamber, M.: Data Mining: Concepts and Techniques. Elsevier, Amsterdam (2011)zbMATHGoogle Scholar
  10. 10.
    John, G.H., Langley, P.: Estimating continuous distributions in Bayesian classifiers. In: Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, pp. 338–345. Morgan Kaufmann Publishers Inc. (1995)Google Scholar
  11. 11.
    Mehrotra, A., Hendley, R., Musolesi, M.: PrefMiner: mining user’s preferences for intelligent mobile notification management. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 1223–1234. ACM (2016)Google Scholar
  12. 12.
    Ozer, M., Keles, I., Toroslu, H., Karagoz, P., Davulcu, H.: Predicting the location and time of mobile phone users by using sequential pattern mining techniques. Comput. J. 59(6), 908–922 (2016)CrossRefGoogle Scholar
  13. 13.
    Pejovic, V., Musolesi, M.: InterruptMe: designing intelligent prompting mechanisms for pervasive applications. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 897–908. ACM (2014)Google Scholar
  14. 14.
    Phithakkitnukoon, S., Dantu, R., Claxton, R., Eagle, N.: Behavior-based adaptive call predictor. ACM Trans. Auton. Adapt. Syst. (TAAS) 6(3), 21 (2011)Google Scholar
  15. 15.
    Ross Quinlan, J.: C4.5: programs for machine learning. Mach. Learn. (1993)Google Scholar
  16. 16.
    Sarker, I.H., Colman, A., Kabir, M.A., Han, J.: Behavior-oriented time segmentation for mining individualized rules of mobile phone users. In: 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA), Montreal, Canada, pp. 488–497. IEEE (2016)Google Scholar
  17. 17.
    Sarker, I.H., Kabir, M.A., Colman, A., Han, J.: An effective call prediction model based on noisy mobile phone data. In: Proceedings of the 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct. ACM (2017)Google Scholar
  18. 18.
    Srinivasan, V., Moghaddam, S., Mukherji, A.: MobileMiner: mining your frequent patterns on your phone. In: ACM International Joint Conference on Pervasive and Ubiquitous Computing. ACM (2014)Google Scholar
  19. 19.
    Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, Burlington (2005)zbMATHGoogle Scholar
  20. 20.
    Witten, I.H., Frank, E., Trigg, L.E., Hall, M.A., Holmes, G., Cunningham, S.J.: Weka: practical machine learning tools and techniques with Java implementations (1999)Google Scholar
  21. 21.
    Wu, C.-C., Chen, Y.-L., Liu, Y.-H., Yang, X.-Y.: Decision tree induction with a constrained number of leaf nodes. Appl. Intell. 45(3), 673–685 (2016)CrossRefGoogle Scholar
  22. 22.
    Wu, X., Kumar, V., Quinlan, J.R., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G.J., Ng, A., Liu, B., Philip, S.Y., et al.: Top 10 algorithms in data mining. Knowl. Inf. Syst. 14(1), 1–37 (2008)CrossRefGoogle Scholar
  23. 23.
    Zhu, H., Chen, E.: Mining mobile user preferences for personalized context-aware recommendation. ACM Trans. Intell. Syst. Technol. 5(4) (2014)CrossRefGoogle Scholar
  24. 24.
    Zhu, X., Wu, X.: Class noise vs. attribute noise: a quantitative study. Artif. Intell. Rev. 22(3), 177–210 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Iqbal H. Sarker
    • 1
  • Muhammad Ashad Kabir
    • 2
  • Alan Colman
    • 1
  • Jun Han
    • 1
  1. 1.Department of Computer Science and Software Engineering, School of Software and Electrical EngineeringSwinburne University of TechnologyMelbourneAustralia
  2. 2.School of Computing and MathematicsCharles Sturt UniversitySydneyAustralia

Personalised recommendations