Patched Completed Local Binary Pattern is an Effective Method for Neuroblastoma Histological Image Classification

  • Soheila Gheisari
  • Daniel R. Catchpoole
  • Amanda Charlton
  • Paul J. Kennedy
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 845)


Neuroblastoma is the most common extra cranial solid tumour in children. The histology of neuroblastoma has high intra-class variation, which misleads existing computer-aided histological image classification methods that use global features. To tackle this problem, we propose a new Patched Completed Local Binary Pattern (PCLBP) method combining Sign Binary Pattern (SBP) and Magnitude Binary Pattern (MBP) within local patches to build feature vectors which are classified by k-Nearest Neighbor (k-NN) and Support Vector Machine (SVM) classifiers. The advantage of our method is extracting local features which are more robust to intra-class variation compared to global ones. We gathered a database of 1043 histologic images of neuroblastic tumours classified into five subtypes. Our experiments show the proposed method improves the weighted average F-measure by 1.89% and 0.81% with k-NN and SVM classifiers, respectively.


Neuroblastic tumour Neuroblastoma Classification Binary pattern Local patch Image analysis Computer-Aided Diagnosis (CAD) 


  1. 1.
  2. 2.
    Boser, B., Guyon, I., Vapnik, V.: A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pp. 144–152 (1992)Google Scholar
  3. 3.
    Boucheron, L.: Object-and spatial-level quantitative analysis of multispectral histopathology images for detection and characterization of cancer. Doctoral Dissertation in University of California at Santa Barbara (2008)Google Scholar
  4. 4.
    Chang, C., Lin, C.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 1–27 (2011). Scholar
  5. 5.
    Cortes, C., Vapnik, V.: Support-Vector Networks. Mach. Learn. 20(3), 273–297 (1995)zbMATHGoogle Scholar
  6. 6.
    Cosatto, E., Miller, M., Graf, H., Meyer, J.: Grading nuclear pleomorphism on histological micrographs. In: International Conference on Pattern Recognition, pp. 1–4 (2008)Google Scholar
  7. 7.
    Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)CrossRefGoogle Scholar
  8. 8.
    Farjam, R., Soltanian-Zadeh, H., Jafari-Khouzani, K., Zoroofi, R.: An image analysis approach for automatic malignancy determination of prostate pathological images. Cytometry Part B: Clin. Cytometry 72(4), 227–240 (2007)CrossRefGoogle Scholar
  9. 9.
    Guo, Z., Zhang, L., Zhang, D.: A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. 19(6), 1657–1663 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hinton, J., Osindero, S.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hipp, J., Flotte, T., Monaco, J., Cheng, J., Madabhushi, A., Yagi, Y., Rodriguez-Canales, J., Emmert-Buck, M., Dugan, M., Hewitt, S., Toner, M., Tompkins, R., Lucas, D., Gilbertson, J., Balis, U.: Computer-aided diagnostic tools aim to empower rather than replace pathologists: lessons learned from computational chess. J. Pathol. Inf. 2(1), 25 (2011)CrossRefGoogle Scholar
  12. 12.
    Kong, J., Sertel, O., Shimada, H., Boyer, K., Saltz, J., Gurcan, M.: Computer-aided evaluation of neuroblastoma on whole-slide histology images: classifying grade of neuroblastic differentiation. Pattern Recogn. 42(6), 1080–1092 (2009)CrossRefGoogle Scholar
  13. 13.
    Lee, K., Street, W.: An adaptive resource-allocating network for automated detection, segmentation, and classification of breast cancer nuclei topic area: image processing and recognition. IEEE Trans. Neural Netw. 14(3), 680–687 (2003)CrossRefGoogle Scholar
  14. 14.
    Lehmann, E.L., Casella, G.: Theory of Point Estimation. STS. Springer, New York (1998). Scholar
  15. 15.
    Mohammed, E., Mohamed, M., Naugler, C., Far, B.: Chronic lymphocytic leukemia cell segmentation from microscopic blood images using watershed algorithm and optimal thresholding. In: 26th IEEE Canadian Conference on Electrical and Computer Engineering, pp. 1–5 (2013)Google Scholar
  16. 16.
    Nguyen, K., Jain, A., Sabata, B.: Prostate cancer detection: fusion of cytological and textural features. J. Pathol. Inf. 2, S3 (2011)CrossRefGoogle Scholar
  17. 17.
    Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)CrossRefGoogle Scholar
  18. 18.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Park, J., Caron, H., Eggert, A.: Neuroblastoma: biology, prognosis, and treatment. Pediatr. Clin. North Am. 55(1), 97–120 (2008)CrossRefGoogle Scholar
  20. 20.
    Powers, D.: Evaluation: from precision, recall and F-measure to ROC, informedness, markedness, and correlation. J. Mach. Learn. Technol. 2(1), 37–63 (2011)MathSciNetGoogle Scholar
  21. 21.
    Qureshi, H., Sertel, O., Rajpoot, N., Wilson, R., Gurcan, M.: Adaptive discriminant wavelet packet transform and local binary patterns for meningioma subtype classification. In: Proceedings of the 11th International Conference on Medical Image Computing and Computer-Assisted Intervention, Part II. pp. 196–204 (2008)Google Scholar
  22. 22.
    Sharma, H., Zerbe, N., Heim, D., Wienert, S., Behrens, H., Hellwich, O., Hufnagl, P.: A multi-resolution approach for combining visual information using nuclei segmentation and classification in histopathological images. In: 10th International Conference on Computer Vision Theory and Applications, pp. 37–46 (2015)Google Scholar
  23. 23.
    Shimada, H., Ambros, I., Dehner, L., Hata, J., Joshi, V., Roald, B., Stram, D., Gerbing, R., Lukens, J., Matthay, K., Castleberry, R.: The international neuroblastoma pathology classification (the Shimada system). Cancer 86(2), 364–372 (1999)CrossRefGoogle Scholar
  24. 24.
    Spanhol, F., Oliveira, L., Caroline, P., Laurent, H.: A dataset for breast cancer histopathological image classification. IEEE Trans. Biomed. Eng. 63(7), 1455–1462 (2016)CrossRefGoogle Scholar
  25. 25.
    Tabesh, A., Teverovskiy, M., Pang, H., Kumar, V., Verbel, D., Kotsianti, A., Saidi, O.: Multifeature prostate cancer diagnosis and gleason grading of histological images. IEEE Trans. Med. Imaging 26(10), 1366–1378 (2007)CrossRefGoogle Scholar
  26. 26.
    Tafavogh, S., Meng, Q., Catchpoole, D., Kennedy, P.: Automated quantitative and qualitative analysis of the whole slide images of neuroblastoma tumour for making a prognosis decision. In: Proceedings of the IASTED 11th International Conference on Biomedical Engineering, pp. 244–251 (2014)Google Scholar
  27. 27.
    Veta, M., Pluim, J., van Diest, P., Viergever, M.: Breast cancer histopathology image analysis: a review. IEEE Trans. Biomed. Eng. 61(5), 1400–1411 (2014)CrossRefGoogle Scholar
  28. 28.
    Yu, K., Zhang, C., Berry, G., Altman, R., Re, C., Rubin, D., Snyder, M.: Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features. Nat. Commun. 7, 1–10 (2016)Google Scholar
  29. 29.
    Zhang, Y., Zhang, B., Lu, W.: Breast cancer histological image classification with multiple features and random subspace classifier ensemble. Stud. Comput. Intell. 450, 27–42 (2013)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Soheila Gheisari
    • 1
  • Daniel R. Catchpoole
    • 2
  • Amanda Charlton
    • 3
  • Paul J. Kennedy
    • 1
  1. 1.Faculty of Engineering and Information Technology, Centre for Artificial IntelligenceUniversity of Technology SydneyUltimoAustralia
  2. 2.Biospecimens Research and Tumour Bank, Children’s Cancer Research UnitThe Kids Research Institute, The Children’s Hospital at WestmeadWestmeadAustralia
  3. 3.The Children’s Hospital at WestmeadWestmeadAustralia

Personalised recommendations