Skip to main content

Biofertilizers: A Sustainable Approach for Pulse Production

  • Chapter
  • First Online:
Legumes for Soil Health and Sustainable Management

Abstract

Nutrient needs of plants can be met through a number of sources which include mineral fertilizers, organic manures, recycled wastes and by-products, biological nitrogen (N) fixation (BNF), natural minerals and to lesser extent nutrients recycled through irrigation waters, and precipitation. These supplement the soil nutrient reserves for nourishing the crops. Presently, soil management strategies are mainly dependent on inorganic chemical-based fertilizers, which caused a serious threat to human health and environment. The exploitation of beneficial microbes as a biofertilizer has become a paramount importance in agriculture for their potential role in food security and sustainable productivity. The eco-friendly approaches inspire a wide range of application of plant growth-promoting rhizobacteria (PGPRs), endo- and ectomycorrhizal fungi, cyanobacteria, and many other useful microscopic organisms. The interactions of these beneficial microbes with environment determine crop health in natural agroecosystem by providing numerous services to crop plants, viz., soil organic matter (SOM) decomposition, nutrient acquisition and recycling, weed control, water absorption, and biocontrol, thus enhancing soil fertility and maintaining soil heath in eco-friendly manner. Various complementing combinations of microbial inoculants for management of major nutrients such as N and phosphorus (P) are necessary for sustainable production. Biofertilizers also cut the cost of chemical fertilizers used in agriculture considerably. An estimated amount of US$ 1421–15,237 of chemical fertilizer in the form of urea per hectare per year can be substituted by biofertilizer. The present chapter highlights the broad canvas of biofertilizers that enhance N and P nutrition in varied crops with special reference to pulses in the form of several perspectives. The mode of action of these microorganisms within and the transformation of nutrients elucidated. In the Indian scenario, the use of biofertilizers faces various constraints, such as longevity, etc. that need to be overcome to achieve substantial fertilizer savings. One of the key issues that remain is the method of formulation of these biofertilizers. Some prospective solutions to tackle the issue are brought out in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adesemoye AO, Kloepper JW (2009) Plant–microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85:1–12

    Article  PubMed  CAS  Google Scholar 

  • Agasimani CA, Mudalgiriyapla, Sreenivasa MN (1994) Response of groundnut to phosphate solubilising microorganisms. Groundnut News 6:5

    Google Scholar 

  • Aggarwal A, Kadian N, Tanwar A, Yadav A, Gupta KK (2011) Role of arbuscular mycorrhizal fungi (AMF) in global sustainable development. J Appl Nat Sci 3:340–351

    Article  Google Scholar 

  • Akhtar MS, Siddiqui ZA (2008) Biocontrol of a root-rot disease complex of chickpea by Glomus intraradices, Rhizobium sp. and Pseudomonas striata. Crop Prot 27:410–417

    Article  Google Scholar 

  • Akhtar MS, Siddiqui ZA (2009) Effects of phosphate solubilizing microorganisms and Rhizobium sp. on the growth, nodulation, yield and root-rot disease complex of chickpea under field condition. Afr J Biotechnol 8:3479–3488

    Google Scholar 

  • Alagawadi AR, Gaur AC (1992) Inoculation of Azospirillum brasilense and phosphate solubilizing bacteria on yield of sorghum [Sorghum bicolor (L.) Moench] in dry land. Trop Agric 69:347–350

    Google Scholar 

  • Ali M, Gupta S (2012) Carrying capacity of Indian agriculture: pulse crops. Curr Sci 102:874–881

    Google Scholar 

  • Ali FS, Loynachan TE (1990) Inhibition of Bradyrhizobium japonicum by diffusates from soybean seed. Soil Biol Biochem 22:973–976

    Article  Google Scholar 

  • Al-Rashidi RK, Loynachan TE, Frederick LR (1982) Desiccation tolerance of four strains of Bradyrhizobium japonicum. Soil Biol Biochem 14:489–493

    Article  Google Scholar 

  • Ames RN, Bethlenfalvay GJ (1987) Localized increase in nodule activity but no competitive interaction of cowpea rhizobia due to pre-establishment of vesicular arbuscular mycorrhiza. New Phytol 106:207–215

    Article  Google Scholar 

  • Andreeva IN, Red’kina TV, Ismailov SF (1993) The involvement of indole acetic acid in the stimulation of Rhizobium-legume symbiosis by Azospirillum brasilense. Russ J Plant Physiol 40:901–906

    Google Scholar 

  • Annapurna K, Balasundaram VR (1995) Microbiological report on All India Coordinated Soybean Improvement Programme. ICAR, New Delhi

    Google Scholar 

  • Ashoka P, Meena RS, Kumar S, Yadav GS, Layek J (2017) Green nanotechnology is a key for eco-friendly agriculture. J Clean Prod 142:4440–4441

    Article  Google Scholar 

  • Azcón R, Rubio R, Barea JM (1991) Selective interactions between different species of mycorrhizal fungi and Rhizobium meliloti strains, and their effects on growth, N2-fixation (15N) and nutrition of Medicago sativa L. New Phytol 117:399–404

    Article  PubMed  Google Scholar 

  • Bagyaraj DJ (1984) Biological interaction with VA mycorrhizal fungi. In: Powell CL, Bagyaraj DJ (eds) VA mycorrhiza. CRC Press, Boca Raton, pp 131–153

    Google Scholar 

  • Bagyaraj DJ, Mehrotra VS, Suresh CK (2002) Vesicular arbuscular mycorrhizal biofertilizer for tropical forest plants. In: Kannaiyan S (ed) Biotechnology of biofertilizers. Narosa Publishing House, New Delhi

    Google Scholar 

  • Bahl N, Jauhri S (1986) Spent mushroom compost as a carrier for bacterial inoculant production. In: Proceedings of the international symposium on scientific and technological aspects of cultivating edible fungi. The Pennsylvania State University, University Park

    Google Scholar 

  • Balachandran D, Nagarajan P (2002) Dual inoculation of Rhizobium and phosphobacteria with phosphorus on black gram cv. Vamban 1. Madras Agric J 89:691–693

    Google Scholar 

  • Balamurugan S, Gunasekaran S (1996) Effect of combined inoculation of Rhizobium sp., and phosphobacteria at different levels of phosphorus in groundnut. Madras Agric J 83:503–505

    Google Scholar 

  • Barea JM, Azcon R, Azcon-Aguilar C (2002) Mycorrhizosphere interactions to improve plant fitness and soil quality. Anton Leeuw 81:343–351

    Article  CAS  Google Scholar 

  • Bashan Y (1986) Alginate beads as synthetic inoculants carriers for the slow release of bacteria that affect plant growth. Appl Environ Microbiol 51:1089–1098

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bashan Y (1998) Inoculants for plant growth promoting bacteria for use in agriculture. Adv Biotechnol 16:729–770

    Article  CAS  Google Scholar 

  • Bashan Y, Carrillo A (1996) Bacterial inoculants for sustainable agriculture. In: Pérez-Moreno J, Ferrera-Cerrato R (eds) New horizons in agriculture: agroecology and sustainable development. Proceedings of the 2nd international symposium on agroecology, sustainable agriculture and education. Colegio de Postgraduados en ciencias agricolas, Montecillo

    Google Scholar 

  • Bashan Y, Holguin G (1997) Azospirillum-plant relationships: environmental and physiological advances (1990–1996). Can J Microbiol 43:103–121

    Article  CAS  Google Scholar 

  • Bashan Y, Levanony H, Ziv-Vecht O (1987) The fate of field-inoculated Azospirillum brasilense Cd in wheat rhizosphere during the growing season. Can J Microbiol 33:107

    Article  Google Scholar 

  • Belimov AA, Kojemiakov AP, Chuvarliyeva CV (1995) Interaction between barley and mixed cultures of nitrogen fixing and phosphate-solubilizing bacteria. Plant Soil 173:29–37

    Article  CAS  Google Scholar 

  • Berg G, Zachow C, Müller H, Phillips J, Tilcher R (2013) Next-generation bio products sowing the seeds of success for sustainable agriculture. Agronomy 3:648–656

    Article  Google Scholar 

  • Beringer JE, Berwin AVB, Johnston Schulman JB, Hopwood DA (1979) The Rhizobium-legume symbiosis, in the cell as a habitat. University Press, Cambridge

    Google Scholar 

  • Bethlenfalvay GJ, Brown MS, Stafford AE (1985) The glycine-glomus-rhizobium symbiosis: antagonistic effects between mycorrhizal colonization and nodulation. Plant Physiol 79:1054–1059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhardwaj D, Ansari MW, Sahoo RK (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Factories 13:66. http://www.microbialcellfactories.com/content/13/1/66

    Article  Google Scholar 

  • Bhata S, Umesh KB (2016) Estimating positive externalities of nitrogen fixation by pulses. Agric Econ Res Rev 29(2):201–209. https://doi.org/10.5958/0974-0279.2016.00048.3

    Article  Google Scholar 

  • Bhattari S, Maskey SL, Kama RL (1997) On-farm experiments on rhizobial inoculants in Nepal. In: Rupela OP, Johansen E, Herridge DF (eds) Extending nitrogen fixation research to farmers’ fields. ICRISAT, Hyderabad

    Google Scholar 

  • Bhowmik SN, Singh CS (2004) Mass multiplication of AM inoculum: effect of plant growth promoting rhizobacteria and yeast in rapid culturing of Glomus mosseae. Curr Sci 86:705–709

    Google Scholar 

  • Bhowmik SN, Yadav GS, Datta M (2015) Rapid mass multiplication of Glomus mosseae inoculum as influenced by some biotic and abiotic factors. Bangladesh J Bot 44:209–214

    Article  Google Scholar 

  • Boby VU, Balakrishna AN, Bagyaraj DJ (2008) Interaction between Glomus mosseae and soil yeasts on growth and nutrition of cowpea. Microbiol Res 163:693–700

    Article  PubMed  CAS  Google Scholar 

  • Bodake HD, Gaikwad SP, Shirke VS (2009) Study of constraints faced by the farmers in adoption of bio-fertilizer. Int J Agric Sci 5:292–294

    Google Scholar 

  • Brahmaprakash GP, Hegde SV (2005) Nitrogen fixing in pigeonpea. In: Ali M, Shivkumar (eds) Advances in pigeonpea research. Indian Institute of Pulses Research, Kanpur

    Google Scholar 

  • Brahmaprakash GP, Sahu PK (2012) Biofertilizers for sustainability. J Indian Inst Sci 92:37–62

    CAS  Google Scholar 

  • Brahmaprakash GP, Girisha HC, Vithal N, Laxmipathy R, Hegde SV (2007) Liquid Rhizobium inoculants formulations to enhance biological nitrogen fixation in food legumes. J Food Legum 20:75–79

    Google Scholar 

  • Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320:37–77

    Article  CAS  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, Loren V, van Themaat E, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    Article  PubMed  CAS  Google Scholar 

  • Buragohain S, Sharma B, Nath JD, Gogaoi N, Meena RS, Lal R (2017) Impact of ten years of bio-fertilizer use on soil quality and rice yield on an inceptisol in Assam, India. Soil Res. https://doi.org/10.1071/SR17001

  • Burris RH, Roberts GP (1993) Biological nitrogen fixation. Annu Rev Nutr 13:317–335

    Article  PubMed  CAS  Google Scholar 

  • Bushby HVA, Marshall KC (1977) Water status of rhizobia in relation to their susceptibility to desiccation and to their protection by montmorillonite. J Gen Microbiol 99:19–28

    Article  Google Scholar 

  • Chao WL, Alexander M (1984) Mineral soils as carriers for Rhizobium inoculants. Appl Environ Microbiol 47:94–97

    PubMed  PubMed Central  CAS  Google Scholar 

  • Clark RB, Zeto SK (2000) Mineral acquisition by arbuscular mycorrhizal plants. J Plant Nutr 23:867–902

    Article  CAS  Google Scholar 

  • Cleveland CC, Townsend AR, Schimel DS, Fisher H, Howarth RW, Hedin LO, Perakis SS, Latty EF, von Fischer JC, Elseroad A, Wasson MF (1999) Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Glob Biogeochem Cycles 13:623–645

    Article  CAS  Google Scholar 

  • Cooper AJ (1985) Crop production recirculating nutrient solution. Sci Hortic 3:35–38

    Google Scholar 

  • Daniels-Hylton KDM, Ahmad MH (1994) Inoculation response in kidney beans (Phaseolusvulgaris L.) to vesicular-arbuscular mycorrhizal fungi and rhizobia in non-sterilized soil. Biol Fertil Soils 18:95–98

    Article  Google Scholar 

  • Datta R, Baraniya D, Wang YF, Kelkar A, Moulick A, Meena RS, Yadav GS, Ceccherini MT, Formanek P (2017) Multi-function role as nutrient and scavenger of free radical in soil. Sustain MDPI 9(8):402. https://doi.org/10.3390/su9081402

  • Dayamani KJ (2010) Formulation and determination of effectiveness of liquid inoculants of plant growth promoting rhizobacteria. PhD thesis, University of Agricultural Sciences, Bangalore, India

    Google Scholar 

  • De Lucca AJ, Connick WJ Jr, Fravel DR, Lewis JA, Bland JM (1990) The use of bacterial alginates to prepare biocontrol formulations. J Ind Microbiol 6:129–134

    Article  Google Scholar 

  • Deaker R, Roughley RJ, Kennedy IR (2004) Legume seed inoculation technology- a review. Soil Biol Biochem 36:75–88

    Article  CAS  Google Scholar 

  • Demir S, Akkopru A (2007) Using of arbuscular mycorrhizal fungi (AMF) for biocontrol of soil borne fungal plant pathogens. In: Chincholkar SB, Mukerji KG (eds) Biological control of plant diseases. Haworth, Philadelphia, pp 17–37

    Google Scholar 

  • Dhakal Y, Meena RS, De N, Verma SK, Singh A (2015) Growth, yield and nutrient content of mungbean (Vigna radiata L.) in response to INM in eastern Uttar Pradesh, India. Bangladesh J Bot 44(3):479–482

    Article  Google Scholar 

  • Dhakal Y, Meena RS, Kumar S (2016) Effect of INM on nodulation, yield, quality and available nutrient status in soil after harvest of green gram. Legum Res 39(4):590–594

    Google Scholar 

  • Digat B (1991) A new encapsulation technology for bacterial inoculants and seed bacterization. In: Keel C, Koller B, Défago G (eds) Plant growth-promoting rhizobacteria – progress and prospects. IOBC/WPRS Bulletin, Zurich

    Google Scholar 

  • Dixon ROD, Wheeler CT (1986) Nitrogen fixation in plants. Chapman and Hall, New York

    Google Scholar 

  • Dommergues YR, Diem HG, Divies C (1979) Polyacrylamide entrapped Rhizobium as an inoculant for legumes. Appl Environ Microbiol 37:779–981

    PubMed  PubMed Central  CAS  Google Scholar 

  • Dube JN, Mahere DP, Bawat AF (1980) Development of coal as a carrier for rhizobial inoculants. Sci Cult 46:304

    Google Scholar 

  • Dudeja SS, Duhan JS (2005) Biological nitrogen fixation research in pulses with special reference to mungbean and urdbean. Indian J Pulses Res 18:107–118

    Google Scholar 

  • Dudeja SS, Khurana AL (1999) Long term multiplication field evaluation of chickpea rhizobia in India. In: Proceedings of international symposium on long term fertilization trials as a basis for sustainable land use and quantification of matter cycles. UFZ-Bericht, Halle

    Google Scholar 

  • Dudeja SS, Khurana AL (2001) Integrated management of N and P availability in chickpea through the use of Rhizobium and phosphate solubilizers. In: Proceedings of XIV international plant nutrition colloquium. Hannover

    Google Scholar 

  • Dudeja SS, Narula N (2008) Molecular diversity of root nodule forming bacteria. In: Khachatourians GG, Arora DK, Rajendran TP, Srivastava AK (eds) Agriculturally important microorganisms, vol 2. Academic World International, Bhopal

    Google Scholar 

  • Dudeja SS, Singh NP, Sharma P, Gupta SC, Chandra R, Dhar B, Bansal RK, Brahmaprakash GP, Potdukhe SR, Gundappagol RC, Gaikawad BG, Nagaraj KS (2011) Biofertilizer technology and pulse production. In: Singh A et al (eds) Bioaugmentation, biostimulation and biocontrol, soil biology. Springer, Berlin

    Google Scholar 

  • Dutta D, Bandyopadhyay P (2009) Performance of chickpea (Cicer arietinum L.) to application of phosphorus and biofertilizer in laterite soil. Arch Agron Soil Sci 55:147–155

    Article  CAS  Google Scholar 

  • Egamberdieva D, Kamilova F, Validov S, Gafurova L, Kucharova Z, Lugtenberg B (2008) High incidence of plant growth stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ Microbiol 10:1–9

    PubMed  CAS  Google Scholar 

  • Fages J (1992) An industrial view of Azospirillum inoculants: formulation and application technology. Symbiosis 13:15–26

    Google Scholar 

  • FAOSTAT (2009) Online interactive database on agriculture. FAOSTAT. www.fao.org

  • Fravel DR, Marois JJ, Lumsden RD, Connick WJ (1985) Encapsulation of potential biocontrol agents in an alginate-clay matrix. Phytopathology 75:774–777

    Article  Google Scholar 

  • Fredeen AL, Terry N (1988) Influence of vesicular–arbuscular mycorrhizal infection and soil phosphorous level on growth and carbon metabolism of soybean. Can J Bot 66:2311–2316

    Article  Google Scholar 

  • Fulcheri E, Frioni D (1994) Azospirillum inoculation of maize: effects on yield on a field experiment in Central Argentina. Biophysics 244:686–691

    Google Scholar 

  • Galloway J, Raghuram N, Abrol YP (2008) A perspective on reactive nitrogen in a global, Asian and Indian context. Curr Sci 94:1375–1381

    CAS  Google Scholar 

  • Ganry F, Diem HG, Dommergues YR (1982) Effect of inoculation with Glomus mosseae on nitrogen fixation by field grown soybeans. Plant Soil 68:321–329

    Article  CAS  Google Scholar 

  • Garbaye L (1994) Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210

    Article  PubMed  Google Scholar 

  • Geneva M, Zehirov G, Djonova E, Kaloyanova N, Georgiev G, Stancheva I (2006) The effect of inoculation of pea plants with mycorrhizal fungi and Rhizobium on nitrogen and phosphorus assimilation. Plant Soil Environ 52:435–440

    Article  CAS  Google Scholar 

  • Giller KE (2001) Nitrogen fixation in tropical cropping systems. CAB International, Wallingford

    Book  Google Scholar 

  • Gosling P, Hodge A, Goodlass G, Bending GD (2006) Arbuscular mycorrhizal fungi and organic farming. Agric Ecosyst Environ 113:17–35

    Article  Google Scholar 

  • Goyal SK, Venkataraman GS (1971) Effects of algalization on high yielding rice varieties. II. Response of soil types. Phykos 10:32–38

    Google Scholar 

  • Gupta SB, Vyas MK, Patil SK (1992) Effect of phosphorus solubilizing bacteria and thiram at different levels of phosphorus on soybean and soil micro flora. J Indian Soc Soil Sci 40:854–856

    CAS  Google Scholar 

  • Harrison MG (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42

    Article  PubMed  CAS  Google Scholar 

  • Hazarika DK, Das KK, Dubey LN, Phookan AK (2000) Effect of vesicular arbuscular mycorrhizal (VAM) fungi and Rhizobium on growth and yield of green gram (Vigna radiata (L.)Wilczek.). J Mycol Plant Pathol 30:424–426

    Google Scholar 

  • Heap AJ, Newman EL (1980) Links between roots by hyphae of vesicular arbuscular mycorrhizas. New Phytol 85:169–171

    Article  Google Scholar 

  • Hegde SV (1994) Population of cowpea rhizobia in farmers’ fields in southern Karnataka: influence of cropping system, locations, and N-level. In: Rupela OP, Kumar Rao JVDK, Wani SP, Johansen C (eds) Linking biological nitrogen fixation research in Asia. ICRISAT, Hyderabad

    Google Scholar 

  • Hegde SV, Brahmaprakash GP (1992) A dry granular inoculants of Rhizobium for soil application. Plant Soil 144:309–311

    Article  Google Scholar 

  • Herridge DF (2008) Inoculation technology for legumes. In: Dilworth MJ, James EK, Sprent JI, Newton WE (eds) Nitrogen fixation: origins, applications and researchprogress. Nitrogen-fixing leguminous symbioses, vol 7. Springer, The Netherlands

    Google Scholar 

  • Herridge DF, Peoples MB, Boddey RM (2008) Marschner review: global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18

    Article  CAS  Google Scholar 

  • Hoa NTL, Thao TY, Lieu P, Herridge DF (2002) N2 fixation of groundnut in the eastern region of south Vietnam. In: Herridge D (ed) Inoculants and nitrogen fixation of legumes in Vietnam. ACIAR proceedings. ACIAR, Canberra

    Google Scholar 

  • Houlton BZ, Wang YY, Vitousek PM, Eield CB (2008) A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 454:327–330

    Article  PubMed  CAS  Google Scholar 

  • Howieson J, Ballard R (2004) Optimising the legume symbiosis in stressful and competitive environments within southern Australia – some contemporary thoughts. Soil Biol Biochem 36:1261–1273

    Article  CAS  Google Scholar 

  • Huber DM, El-Nasshar L, Moore HW, Mathre DE, Wagner JE (1989) Interaction between a peat carrier and bacterial seed treatments evaluated for biological control of the take – all diseases of wheat (Triticum aestivum L.). Biol Fertil Soils 8:166–171

    Article  Google Scholar 

  • Hynes RK, Jans DC, Bremer E, Lupwayi NZ, Rice WA, Clayton GW, Collins MM (2001) Rhizobium sp. population dynamics in the pea rhizosphere of rhizobial inoculants strain applied in different formulations. Can J Microbiol 47:595–600

    Article  PubMed  CAS  Google Scholar 

  • Iswaran V, Sen A, Apte R (1972) Plant compost as a substitute for peat for legume inoculants. Curr Sci 41:299

    Google Scholar 

  • Itzigsohn R, Kapulnik Y, Okon Y, Dovrat A (1993) Physiological and morphological aspects of interactions between Rhizobium meliloti and alfalfa (Medicago saliva) in association with Azospirillum brasilense. Can J Microbiol 39:610–615

    Article  Google Scholar 

  • Jackson AM, Whipps JM, Lynch JM (1991) Production, delivery systems and survival in soil of four fungi with disease biocontrol potential. Enzym Microb Technol 13:636–642

    Article  Google Scholar 

  • Jangid MK, Khan IM, Singh S (2012) Constraints faced by the organic and conventional farmers in adoption of organic farming practices. Indian Res J Ext Educ Spec Issue 2:28–32

    Google Scholar 

  • Jarvis BDW, van Berkum P, Chen WX, Nour SM, Fernandez MP, Cleyet-Marel JC, Gillis M (1997) Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum and Rhizobium tianshanense to Mesorhizobium gen. nov. Int J Syst Bacteriol 47:895–898

    Article  Google Scholar 

  • Jha MN, Kumar P, Chourasia SK (2012) Hope, hype and reality of biofertilizer. Fertil Technol 121:448–480

    Google Scholar 

  • Jia Y, Gray VM, Straker CJ (2004) The influence of Rhizobium and arbuscular mycorrhizal fungi on nitrogen and phosphorus accumulation by Vicia faba. Ann Bot 94:251–258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Joshi PK (1994) Field response of groundnut to Bradyrhizobium inoculation. In: Rupela OP, Kumar Rao JVDK, Wani SP, Johansen C (eds) Linking biological nitrogen fixation research in Asia. ICRISAT, Hyderabad

    Google Scholar 

  • Jung G, Mugnier J, Diem HG, Dommergues YR (1982) Polymer-entrapped Rhizobium as an inoculant for legumes. Plant Soil 65:219–231

    Article  CAS  Google Scholar 

  • Kandasamy R, Prasad NN (1971) Lignite as a carrier of rhizobia. Curr Sci 40:496

    Google Scholar 

  • Khan MZ, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of meta contaminated soils. Environ Chem Lett 7:1–19

    Article  CAS  Google Scholar 

  • Khrurana AL, Dudeja SS, Singh M (1999) Increasing the efficiency of phosphatic fertilizer with phosphate solubilizing bacteria to improve soil fertility and chickpea (Cicer arietinum) productivity. In: Proceedings of international symposium on long term fertilization trials as a basis for sustainable land use and quantification of matter cycles. UFZ-Bericht, Halle

    Google Scholar 

  • Khurana AL, Dudeja SS (1994) On-farm experience in the use of rhizobial inoculants on pigeonpea in India. In: Rupela OP, Kumar Roo JVDK, Wani SP, Johansen C (eds) Linking biological nitrogen fixation research in Asia. ICRISAT, Hyderabad

    Google Scholar 

  • Khurana AL, Namdeo SL, Patel BI, Dudeja SS (1997a) On-farm experiments on rhizobial inoculants – problems and possible solutions. In: Rupela OP, Johansen C, Herridge DF (eds) Extending nitrogen fixation researchto farmers’ fields. ICRISAT, Hyderabad

    Google Scholar 

  • Khurana AL, Namdeo SL, Patel BJ, Dudeja SS (1997b) On-farm experiments on rhizobial inoculants: problems and possible solutions. In: Rupela OP, Johansen C, Herridge DF (eds) Extending nitrogen fixation research to farmers’ fields. Proceeding of managing legumes nitrogen fixation in cropping systems of Asia, ICRISAT Asia Center

    Google Scholar 

  • Kitamikado M, Yamaguchi K, Tseng CH, Okabe B (1990) Methods designed to detect alginate-degrading bacteria. Appl Environ Microbiol 56:2939–2940

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kloepper JW, Lifshitz R, Schroth MN (1988) Pseudomonas inoculants to benefit plant production. In: ISI atlas of science. Institute for Scientific Information, Philadelphia

    Google Scholar 

  • Knobeloch L, Salna B, Hogan A, Postle J, Anderson H (2000) Blue babies and nitrate-contaminated well water. Environ Health Perspect 108:675–678

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kothari SK, Marschner H, Romheld V (1991) Contribution of the VA mycorrhizal hyphae in acquisition of phosphorus and zinc by maize grown in a calcareous soil. Plant Soil 131:177–185

    Article  CAS  Google Scholar 

  • Kumar R, Chandra R (2008) Influence of PGPR and PSB on Rhizobium leguminosarum Bv. viciae strain competition and symbiotic performance in lentil. World J Agric Sci 4:297–301

    Google Scholar 

  • Kumar S, Sheoran S, Kumar SK, Kumar P, Meena RS (2016) Drought: a challenge for Indian farmers in context to climate change and variability. Progress Res Int J 11:6243–6246

    Google Scholar 

  • Le Tacon F, Jung G, Mugnier J, Michelot P, Mauperin C (1985) Efficiency in a forest nursery of an ectomycorrhizal fungus inoculum produced in a fermentor and entrapped in polymeric gels. Can J Bot 63:1664–1668

    Article  Google Scholar 

  • Lewis JA, Papavizas GC (1985) Characteristics of alginate pellets formulated with Trichoderma and Gliocladium and their effect on the proliferation of the fungi in the soil. Plant Pathol 34:571–577

    Article  Google Scholar 

  • Li CY, Huang LL (1987) Nitrogen fixing (acetylene reducing) bacteria associated with ectomycorrhizas of Douglas –fir. Plant Soil 98:425–428

    Article  CAS  Google Scholar 

  • Li XL, Marschner H, George E (1991) Acquisition of phosphorus and copper by VA–mycorrhizal hyphae and root-to-shoot transport in white clover. Plant Soil 136:49–57

    Article  CAS  Google Scholar 

  • Li CY, Massicote HB, Moore LVH (1992) Nitrogen-fixing Bacillus sp. associated with Douglas -fir tuberculate ectomycorrhizae. Plant Soil 140:35–40

    Article  CAS  Google Scholar 

  • Lippert K, Galinski EA (1992) Enzyme stabilization by ectoine type compatible solutes: protection against heating, freezing and drying. Appl Microbiol Biotech 37:61–65

    Article  CAS  Google Scholar 

  • Lodwig EM, Hosie AHF, Bourdés A, Findlay K, Allaway D, Karunakaran R, Downie JA, Poole PS (2003) Amino-acid cycling drives nitrogen fixation in the legume–Rhizobium symbiosis. Nature 422:722–726

    Article  PubMed  CAS  Google Scholar 

  • Madigan MT, Martinko JM, Dunlap PV, Clark DP (2009) Brock biology of microorganisms, 12th edn. Pearson Benjamin, Cummings

    Google Scholar 

  • Mahanty T, Bhattacharjee S, Goswami M, Bhattacharyya P, Das B, Ghosh A, Tribedi P (2016) Biofertilizers: a potential approach for sustainable agriculture development. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-016-8104-0

  • Mahdi SS, Hassan GI, Samoon SA, Rather HA, Dar Showkat A, Zehra B (2010) Biofertilizers in organic agriculture. J Phytol 2:42–54

    Google Scholar 

  • Manoharachary C (2004) Biodiversity, taxonomy, ecology, conservation and biotechnology of arbuscular mycorrhizal fungi. Indian Phytopathol 57:01–06

    Google Scholar 

  • Marshall DI, Bateman JD, Brockwell J (1993) Validation of a serial-dilution, plant-infection test for enumerating Rhizobium leguminosarum bv. viciae and its application for counting rhizobia in acid soils. Soil Biol Biochem 25:261–268

    Article  Google Scholar 

  • Marx DH, Kenney DS (1982) Production of ectomycorrhizal fungus inoculum. In: Schenck NC (ed) Methods and principles of mycorrhizal research. The American Phytopathological Society, St. Paul

    Google Scholar 

  • Mary P, Ochin D, Tailliez R (1985) Rates of drying and survival of Rhizobium meliloti during storage at different relative humidities. Appl Environ Microbiol 50:207–211

    PubMed  PubMed Central  CAS  Google Scholar 

  • Meena H, Meena RS (2017) Assessment of sowing environments and bio-regulators as adaptation choice for clusterbean productivity in response to current climatic scenario. Bangladesh J Bot 46(1):241–244

    Google Scholar 

  • Meena KK, Meena RS, Kumawat MS (2013) Effect of sulphur and iron fertilization on yield attribute, yield, nutrient uptake of mungbean (Vigna radiata L.). Indian J Agric Sci 83(4):108–112

    Google Scholar 

  • Meena VS, Maurya BR, Verma R, Meena RS, Jatav GK, Meena SK, Meena R, Meena SK (2013a) Soil microbial population and selected enzyme activities as influenced by concentrate manure and inorganic fertilizer in alluvium soil of Varanasi. Bioscience 8(3):931–935

    CAS  Google Scholar 

  • Meena RS, Yadav RS, Meena H, Kumar S, Meena YK, Singh A (2015a) Towards the current need to enhance legume productivity and soil sustainability worldwide: a book review. J Clean Prod 104:513–515

    Article  Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015b) Towards the plant stress mitigate the agricultural productivity: a book review. J Clean Prod 102:552–553

    Article  Google Scholar 

  • Meena H, Meena RS, Singh B, Kumar S (2016) Response of bio-regulators to morphology and yield of clusterbean [Cyamopsis tetragonoloba (L.) Taub.] under different sowing environments. J App Nat Sci 8(2):715–718

    CAS  Google Scholar 

  • Meena RS, Kumar V, Yadav GS, Mitran T (2017a) Response and interaction of Bradyrhizobium japonicum and Arbuscular mycorrhizal fungi in the soybean rhizosphere: a review. Plant Growth Reg. Accepted in press

    Article  CAS  Google Scholar 

  • Meena RS, Meena PD, Yadav GS, Yadav SS (2017b) Phosphate solubilizing microorganisms, principles and application of microphos technology. J Clean Prod 145:157–158

    Article  Google Scholar 

  • Mehdi Z, Nahid S-R, Alikhani HA, Nasser A (2006) Responses of lentil to co-inoculation with phosphate-solubilizing rhizobial strains and arbuscular mycorrhizal fungi. J Plant Nutr 29:1509–1522

    Article  CAS  Google Scholar 

  • Mehrvarz S, Chaichi MR, Alikhani HA (2008) Effects of phosphate solubilizing microorganisms and phosphorus chemical fertilizer on yield and yield components of barley (Hordeum vulgare L.). Am Eurasian J Agric Environ Sci 3:822–828

    Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial plant pathogenic and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663

    Article  PubMed  CAS  Google Scholar 

  • Molla MN, Solaiman ARM (2009) Association of arbuscular mycorrhizal fungi with leguminous crops grown in different agro-ecological zones of Bangladesh. Arch Agron Soil Sci 55:233–245

    Article  CAS  Google Scholar 

  • Morel MA, Braña V, Castro-Sowinski S (2012) Legume crops, importance and use of bacterial inoculation to increase production. In: Goyal A (ed) Crop plant. ISBN: 978-953-51 0527-5, http://www.intechopen.com/books/crop-plant/legume-crops-importance-and-useofbacterial-inoculation-to-increase-production. Last visited on April, 2017

  • Mosse B (1977) Plant growth responses to vesicular-arbuscular mycorrhiza. X. Responses to Stylosanthes and maize to inoculation in unsterile soils. New Phytol 78:277–288

    Article  Google Scholar 

  • Mosse B, Powell CL, Hayman DS (1976) Plant growth responses to vesicular-arbuscular mycorrhiza. IX. Interactions between VA mycorrhiza, rock phosphate and symbiotic nitrogen fixation. New Phytol 76:331–342

    Article  CAS  Google Scholar 

  • Motsara MR, Bhattacharyya P, Srivastava B (1995) Biofertilizer technology, marketing and usage-A source book-cum-glosarry. Fertilizer Development and Consultation Organisation, New Delhi

    Google Scholar 

  • Muchovej RM (2001) Importance of mycorrhizae for agricultural crops. http://www.phc.eu/files/publicaties/Ag_Mycorrhizae_Public_document.pdf. Last accessed April 2017

  • Mugnier J, Jung G (1985) Survival of bacteria and fungi in relation to water activity and solvent properties of water in biopolymer gels. Appl Environ Microbiol 50:108–114

    PubMed  PubMed Central  CAS  Google Scholar 

  • Muleta D (2010) Legume responses to arbuscular mycorrhizal fungi inoculation in sustainable agriculture. In: Khan MS et al (eds) Microbes for legume improvement. Springer, Wien. https://doi.org/10.1007/978-3-211-99753-6_12

    Chapter  Google Scholar 

  • Munchbach M, Nocker A, Narberhaus F (1999) Multiple small heat shock proteins in rhizobia. J Bacteriol 181:83–90

    PubMed  PubMed Central  CAS  Google Scholar 

  • Munns DN, Mosse B (1980) Mineral nutrition of legume crops. In: Summerfield RJ, Bunting AH (eds) Advances in legume science. HMSO, London

    Google Scholar 

  • Napamornbodi O, Rajanasiriwong W, Thamsurakul S (1988) Production of VAM fungi, Glomus intraradices and G. mosseae in tissue culture. In: Mycorrhiza for green Asia. University of Madras, Tamil Nadu

    Google Scholar 

  • Navazio L, Moscatiello R, Genre A, Novero M, Baldan B, Bonfante P, Mariani P (2007) A diffusible signal from arbuscular mycorrhizal fungi elicits a transient cytosolic calcium elevation in host plant cells. Plant Physiol 144:673–681

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nethravathi CS, Brahmaprakash GP (2005) Alginate based composite biofertilizer of Bradyrhizobium japonicum and Bacillus megaterium for soybean (Glycine max (L) Merrill). J Soil Biol Ecol 25:1–13

    Google Scholar 

  • Nkaa FA, Nwokeocha OW, Ihuoma O (2014) Effect of phosphorus fertilizer on growth and yield of cowpea (Vigna unguiculata). J Pharm Biol Sci 9:74–82

    Google Scholar 

  • Oldroyd GED, Harrison MJ, Udvardi M (2005) Peace talks and trade deals: keys to long-term harmony in legume-microbe symbioses. Plant Physiol 137:1205–1210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Olsen PE, Rice WA, Collins MM (1994a) Biological contaminants in North American legume inoculants. Soil Biol Biochem 27:699–701

    Article  Google Scholar 

  • Olsen PE, Rice WA, Bordeleau LM, Biederbeck VO (1994b) Analysis and regulation of legume inoculants in Canada: the need for an increase in standards. Plant Soil 161:127–134

    Article  Google Scholar 

  • Paau AS, Graham LL, Bennett M (1991) Progress in formulation research for PGPR and biocontrol inoculants. In: Keel C, Koller B, Défago G (eds) Plant growth-promoting rhizobacteria-progress and prospects. IOBC/WPRS Bulletin, Zurich

    Google Scholar 

  • Pagano MC, Cabello MN, Scotti MR (2007) Phosphorus response of three native Brazilian trees to inoculation with four arbuscular mycorrhizal fungi. J Agric Technol 3:231–240

    Google Scholar 

  • Pelczar MJ Jr, Chan ECS, Krieg NR (1993) Microbiology, 5th edn. Tata McGraw-Hill Publishing Company Limited, New Delhi

    Google Scholar 

  • Peoples MB, Brockwell J, Herridge DF, Rochester IJ, Alves BIR, Urquiaga S, Boddey RM, Dakora FD, Bhattarai S, Maskey SL, Sampet C, Rerkasem B, Khans DF, Hauggaard-Nielsen H, Jensen BS (2009) The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 48:1–17

    Article  CAS  Google Scholar 

  • Philip K, Jauhri KS (1984) Pressmud: a potential carrier for Rhizobium and Azotobacter 1. Comparative analytical studies of various carrier materials. Z Mikrobiol 139:5–4

    Google Scholar 

  • Poinsot V, Bélanger E, Laberge S, Yang GP, Antoun H, Cloutier J, Treilhou M, Dénarié J, Promé JC, Debellé F (2001) Unusual methyl-branched a, ß-unsaturated acyl chain substitutions in the Nod factors of an Arctic Rhizobium, Mesorhizobium sp. Strain N33 (Oxytropicarctobia). J Bacteriol 183:3721–3728

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Polonenko DR (1994) Commercial opportunities for multiorganism inoculants. In: Germida JJ (ed) Proceedings of the BIOREM 4th annual general meeting. BIOREM, Montreal

    Google Scholar 

  • Postgate JR (1989) Trends and perspectives in nitrogen fixation research. Adv Microb Physiol 30:1–22

    PubMed  CAS  Google Scholar 

  • Raja N (2013) Biopesticides and biofertilizers: ecofriendly sources for sustainable agriculture. J Biofertil Biopestic. doi:1000e112:1000e112

    Google Scholar 

  • Ram K, Meena RS (2014) Evaluation of pearl millet and mungbean intercropping systems in arid region of Rajasthan (India). Bangladesh J Bot 43(3):367–370

    Google Scholar 

  • Reddy AA (2004) Consumption pattern, trade and production potential of pulses. Econ Polit Wkly 39:4854–4860. http://ssrn.com/abstract=1537541

    Google Scholar 

  • Reddy AA (2009) Pulses production technology: status and way forward. Econ Polit Wkly 44:73–82

    Google Scholar 

  • Reddy AA, Reddy GP (2010) Supply side constrains in production of pulses in India: a case study of lentil. Agric Econ Res Rev 23:129–136

    Google Scholar 

  • Redecker D, Raab P (2006) Phylogeny of the Glomeromycota (arbuscular mycorrhizal fungi): recent developments and new gene markers. Mycologia 98:885–895

    Article  PubMed  Google Scholar 

  • Rewari RB (1984) Summarised results of microbiology trials. All-India Co-ordinated Research Project on Improvement of Pulses, New Delhi

    Google Scholar 

  • Rewari RB (1985) Summarised results of microbiology trials. All-India Co-ordinated Research Project on Improvement of Pulses, New Delhi

    Google Scholar 

  • Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorous by plants. Aust J Plant Physiol 28(9):897–906

    Google Scholar 

  • Rooge RB, Patil VC, Ravikrishnan (1998) Effect of phosphorus application with phosphate solubilisation organisms on the yield, quality and P uptake of soybean. Legum Res 21:85–90

    Google Scholar 

  • Sadasivam KV, Tyagi RK, Ramarethinam S (1986) Evaluation of some agricultural wastes as carriers for bacterial inoculants. Agric Wastes 17:301–306

    Article  Google Scholar 

  • Sahgal M, Johri BN (2003) The changing face of rhizobial systematics. Curr Sci 84:43–48

    Google Scholar 

  • Sahoo RK, Ansari MW, Pradhan M, Dangar TK, Mohanty S, Tuteja N (2014) Phenotypic and molecular characterization of efficient native Azospirillum strains from rice fields for crop improvement. Protoplasma. https://doi.org/10.1007/s00709-013-0607-7

  • Sanginga N (2003) Role of biological nitrogen fixation in legume based cropping systems; a case study of West Africa farming systems. Plant Soil 252:25–39

    Article  CAS  Google Scholar 

  • Santos VB, Araujo SF, Leite LF, Nunes LA, Melo JW (2012) Soil microbial biomass and organic matter fractions during transition from conventional to organic farming systems. Geoderma 170:227–231

    Article  CAS  Google Scholar 

  • Sattar MA, Khanam D, Ahmad S, Haider MR, Podder AK, Bhuiyan MA (1997) On-farm experiments on rhizobial inoculants in Bangladesh: results, problems, and possible solutions. In: Rupela OP, Johansen C, Herridge DF (eds) Extending nitrogen fixation research to farmers’ fields. ICRISAT, Hyderabad

    Google Scholar 

  • Saxena D, Mohammed A, Khanna S (1996) Modulation of protein profiles in Rhizobium sp under salt stress. Can J Microbiol 42:617–620

    Article  CAS  Google Scholar 

  • Saxena AK, Rathi SK, Tilak KVBR (1997) Differential effect of various endomycorrhizal fungi on nodulating ability of green gram by Bradyrhizobium sp. (Vigna) strain S24. Biol Fertil Soils 24:175–178

    Article  CAS  Google Scholar 

  • Schuessler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Article  Google Scholar 

  • Shanker S, Brahmaprakash GP (2004) Development of composite biofertilizer containing Bradyrhizobium+Bacillus megaterium in different formulations. J Soil Biol 24:63–70

    Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus 2:587. http://www.springerplus.com/content/2/1/587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Siddiqui ZA, Baghel G, Akhtar MS (2007) Biocontrol of Meloidogyne javanica by Rhizobium and plant growth-promoting rhizobacteria on lentil. World J Microbiol Biotechnol 23:435–441

    Article  CAS  Google Scholar 

  • Silvester WB (1975) Ecological and economical significance of the non-legume symbioses. In: Newton WE, Nyman CJ (eds) 1st international symposium onnitrogen fixation. Washington State University Press, Washington, DC

    Google Scholar 

  • Singh MS (2005) Effect of Rhizobium, FYM and chemical fertilizers on legume crops and nutrient status of soil-a review. Agric Rev 26:309–312

    Google Scholar 

  • Singh CS, Amawate JS, Tyagi SP, Kapoor A (1990) Interaction effect of Glomus fasciculatum and Azospirillum brasilense on yields of various genotypes of wheat (Triticum aestivum) in pots. Zentralbl Mikrobiol 145:203–208

    Google Scholar 

  • Singh CS, Kapoor A, Wange SS (1991) The enhancement of root colonisation of legumes by vesicular-arbuscular mycorrhizal (VAM) fungi through the inoculation of the legume seed with commercial yeast (Saccharomyces cerevisiae). Plant Soil 131:129–133

    Article  Google Scholar 

  • Singh JS, Pandey VC, Singh DP (2011) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140:339–353

    Article  Google Scholar 

  • Singleton PW, Boonkerd N, Carr TJ, Thompson JA (1997) Technical and market constraints limiting legume inoculant use in Asia. In: Rupela OP, Johansen C, Herridge DF (eds) Extending nitrogen fixation researchto farmers’ fields. ICRISAT, Hyderabad

    Google Scholar 

  • Singleton P, Keyser H, Sande E (2002) Development and evaluation of liquid inoculants. In: Herridge D (ed) Inoculants and nitrogen fixation of legume in Vietnam. ACIAR Proceedings

    Google Scholar 

  • Sinha RK, Valani D, Chauhan K, Agarwal S (2014) Embarking on a second green revolution for sustainable agriculture by vermiculture biotechnology using earthworms: reviving the dreams of Sir Charles Darwin. Int J Agric Health Saf 1:50–64

    Google Scholar 

  • Slattery JJ, Coventry DR, Slattery W (2001) Rhizobial ecology as affected by the soil environment. Aust J Exp Agric 41:289–298

    Article  CAS  Google Scholar 

  • Smidsrod O, Skjak-Braek G (1990) Alginate as immobilization matrix for cells. Trends Biotechnol 8:71–78

    Article  PubMed  CAS  Google Scholar 

  • Smith RS (1992) Legume inoculant formulation and application. Can J Microbiol 38:485–492

    Article  Google Scholar 

  • Smith RS (1995) Inoculant formulations and applications to meet changing needs. In: Tikhonovich IA, Provorov NA, Romanov VI, Newton WE (eds) Nitrogen fixation: fundamentals and applications. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Smith SE, Read DJ, Harley JL (1997) Mycorrhizal symbiosis, 2nd edn. Academic, London

    Google Scholar 

  • Sougoufara B, Diem HG, Dommergues YR (1989) Response of field -grown Casuarina equisetifolia to inoculation with Frankia strain ORS 021001 entrapped in alginate beads. Plant Soil 118:133–137

    Article  Google Scholar 

  • Sparrow SD, Ham GE (1983) Survival of Rhizobium phaseoli in six carrier materials. J Agron 75:181–184

    Article  Google Scholar 

  • Sprent JI (2001) Nodulation in legumes. Royal Botanic Gardens, London

    Google Scholar 

  • Sridhar V, Brahmaprakash GP, Hegde SV (2004) Development of a liquid inoculant using osmoprotectants for phosphate solubilizing bacteria. Karnataka J Agric Sci 17:251–257

    Google Scholar 

  • Stancheva I, Geneva M, Djonova E, Kaloyanova N, Sichanova M, Boychinova M, Georgiev G (2008) Response of alfalfa (Medicago sativa L) growth at low accessible phosphorus source to the dual inoculation with mycorrhizal fungi and nitrogen fixing bacteria. Gen Appl Plant Physiol 34:319–326

    CAS  Google Scholar 

  • Stanier RY (1987) General microbiology, 5th edn. Macmillan, London

    Google Scholar 

  • Streeter JG (1985) Accumulation of alpha, alpha-trehalose by Rhizobium bacteria and bacteroids. J Bacteriol 164:78–84

    PubMed  PubMed Central  CAS  Google Scholar 

  • Subba Rao NS, Tilak KVBR (1977) Souvenir bulletin. Directorate of Pulses Development, Government of India

    Google Scholar 

  • Subba Rao NS, Tilak KVBR, Singh CS (1986) Dual inoculation with Rhizobium sp. and Glomus fasciculatum enhances nodulation, yield and nitrogen fixation in chickpea (Cicer arietinum Linn). Plant Soil 95:351–359

    Article  Google Scholar 

  • Suja G (2008) Strategies for organic production of tropical tuber crops. In: Venkateswarlu B, Balloli SS, Ramakrishna YS (eds) Organic farming in rain fed agriculture: opportunities and constraints. Central Research Institute for Dryland Agriculture, Hyderabad, pp 135–143

    Google Scholar 

  • Surendra ST, Pathan MA, Gupta KP, Khandkar UR (1993) Effect of phosphate solubilising bacteria at different levels of phosphate on black gram. India J Agron 38:131–133

    Google Scholar 

  • Tagore GS, Namdeo SL, Sharma SK, Kumar N (2013) Effect of Rhizobium and phosphate solubilizing bacterial inoculants on symbiotic traits, nodule leghemoglobin, and yield of chickpea genotypes. Int J Agron 2013:1–8. Article ID 581627, 8 pages. https://doi.org/10.1155/2013/581627

    Article  CAS  Google Scholar 

  • Thies JE, Woomer PL, Singleton PW (1995) Enrichment of Bradyrhizobium spp. populations in soil due to cropping of the homologous host legume. Soil Biol Biochem 27:633–637

    Article  CAS  Google Scholar 

  • Tittabutr P, Payakapong W, Teaumroong N, Singleton PW, Boonkerd N (2007) Growth, survival and field performance of bradyrhizobial liquid inoculants formulations with polymeric additives. Sci Asia 33:69–77

    Article  CAS  Google Scholar 

  • Trivedi P, Pandey A, Palni LMS (2012) Bacterial inoculants for field applications under mountain ecosystem: present initiatives and future prospects. In: Maheshwari DK (ed) Bacteria in agrobiology: plant probiotics. Springer, Berlin. https://doi.org/10.1007/978-3-642-27515-9_2

    Chapter  Google Scholar 

  • Valsalakumar N, Ray JG, Potty VP (2007) Arbuscular mycorrhizal fungi associated with green gram in south India. Agron J 99:1260–1264

    Article  CAS  Google Scholar 

  • van der Heijden MGA, Streitwolf-Engel R, Riedl R, Siegrist S, Neudecker A, Ineichen K, Boller T, Wiemken A, Sanders IR (2006) The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytol 172:739–752

    Article  PubMed  Google Scholar 

  • van der Heijden MGA, Rinaudo V, Verbruggen E, Scherrer C, Bàrberi P, Giovannetti M (2008) The significance of mycorrhizal fungi for crop productivity and ecosystem sustainability in organic farming systems. In: 16th IFOAM organic world congress, Modena

    Google Scholar 

  • Van Elsas JD, Heijnen CE (1990) Methods for the introduction of bacteria into soil: a review. Biol Fertil Soils 10:127–133

    Article  Google Scholar 

  • Vankessel C, Singleton PW, Hoben HJ (1985) Enhanced N-transfer from a soybean to maize by vesicular arbuscular mycorrhizal (VAM) fungi. Plant Physiol 79:562–563

    Article  CAS  Google Scholar 

  • Varma D, Meena RS (2016) Mungbean yield and nutrient uptake performance in response of NPK and lime levels under acid soil in Vindhyan region, India. J App Nat Sci 8(2):860–863

    Google Scholar 

  • Varma D, Meena RS, Kumar S (2017) Response of mungbean to fertility and lime levels under soil acidity in an alley cropping system in Vindhyan Region, India. Int J Chem Stud 5(2):384–389

    Google Scholar 

  • Vejan P, Abdullah R, Khadiran T, Ismail S, Boyce AN (2016) Review role of plant growth promoting Rhizobacteria in agricultural sustainability—a review. Molecules 21:573. https://doi.org/10.3390/molecules21050573

    Article  CAS  PubMed Central  Google Scholar 

  • Velineni S, Brahmaprakash GP (2011) Survival and phosphate solubilizing ability of Bacillus megaterium in liquid inoculants under high temperature and desiccation stress. J Agric Sci Technol 13:795–802

    CAS  Google Scholar 

  • Venkataraman GS (1981) Blue green algae for rice production—a manual for its production’. F.A.O. Soil Bulletin. 46, p 102

    Google Scholar 

  • Verma JP, Meena VS, Kumar A, Meena RS (2015a) Issues and challenges about sustainable agriculture production for management of natural resources to sustain soil fertility and health: a book review. J Clean Prod 107:793–794

    Article  Google Scholar 

  • Verma JP, Jaiswal DK, Meena VS, Meena RS (2015b) Current need of organic farming for enhancing sustainable agriculture. J Clean Prod 102:545–547

    Article  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Vincent JM, Thompson JA, Donovan KO (1962) Death of root nodule bacteria on drying. Aust J Agric Res 13:258

    Article  Google Scholar 

  • Vithal N (2004) Development of liquid inoculant formulations for Bradyrhizobium sp.: (Arachis), Azospirillum lipoferum and Azotobacter chroococcum. Ph.D. thesis, University of Agricultural Sciences, Bangalore

    Google Scholar 

  • Walter JF, Paau AS (1993) Microbial inoculant production and formulation. In: Metting FB Jr (ed) Soil microbial ecology. Marcel Dekker, New York

    Google Scholar 

  • Wani SP, Lee KK (1991) Role of biofertilizers in upland crop production. In: Tandon HLS (ed) Fertilizers of organic manures, recycle waste and biofertilizers. Fertilizer Development and Consultation Organization, New Delhi

    Google Scholar 

  • Wani SP, Lee KK (2002) Biofertilizers for sustaining cereal crop production. In: Kannaiyan S (ed) Biotechnology of biofertilizers. Narosa publishing House, New Delhi

    Google Scholar 

  • Wani SP, Rupela OP, Lee KK (1995) Sustainable agriculture in the semi-arid tropics through biological nitrogen fixation in grain legumes. Plant Soil 174:29–49

    Article  CAS  Google Scholar 

  • Weber E, George E, Beck DP, Saxena MC, Marschner H (1992) Vesicular-arbuscular mycorrhiza and phosphorus uptake of chickpea grown in Northern Syria. Exp Agric 28(433):442

    Google Scholar 

  • Xavier LJC, Germida JJ (2002) Response of lentil under controlled conditions to co-inoculation with arbuscular mycorrhizal fungi and rhizobia varying in efficacy. Soil Biol Biochem 34:181–188

    Article  CAS  Google Scholar 

  • Xavier IJ, Holloway G, Leggett M (2004) Development of rhizobial inoculant formulations. In: Proceedings of the great plains inoculant forum. Plant Management Network, Saskatoon, Saskatchewan

    Article  Google Scholar 

  • Yadav GS, Babu S, Meena RS, Debnath C, Saha P, Debbaram C, Datta M (2017) Effects of godawariphosgold and single supper phosphate on groundnut (Arachis hypogaea) productivity, phosphorus uptake, phosphorus use efficiency and economics. Indian J Agric Sci 87(9):1165–1169

    Google Scholar 

  • Youssef MMA, Eissa MFM (2014) Biofertilizers and their role in management of plant parasitic nematodes – a review. J Biotechnol Pharm Res 5:1–6

    Google Scholar 

  • Zaidi A, Khan MS, Amil M (2003) Interactive effect of rhizotrophic microorganisms on yield and nutrient uptake of chickpea (Cicer arietinum L.). Eur J Agron 19:15–21

    Article  Google Scholar 

  • Zarei M, Saleh-Rastin N, Alikhani HA, Aliasgharzadeh N (2006) Responses of lentil to co-inoculation with phosphate-solubilizing rhizobial strains and arbuscular mycorrhizal fungi. J Plant Nutr 29:1509–1522

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nath Bhowmik, S., Das, A. (2018). Biofertilizers: A Sustainable Approach for Pulse Production. In: Meena, R., Das, A., Yadav, G., Lal, R. (eds) Legumes for Soil Health and Sustainable Management. Springer, Singapore. https://doi.org/10.1007/978-981-13-0253-4_14

Download citation

Publish with us

Policies and ethics