Skip to main content

Confirmation of Nanomaterials with Low-Toxicity or Non-toxicity Property

  • Chapter
  • First Online:

Abstract

In the nanoscience field, besides the preparation of engineered nanomaterials (ENMs) with excellent physicochemical properties, to obtain the ENMs with the safe property for environmental organisms and human beings is also another important aim. In this chapter, we summarize the progress on the assessment and confirmation of low-toxicity or relative non-toxicity property of some important ENMs (such as graphite, graphene quantum dots (GQDs), carboxyl-functionalized graphene (G–COOH), Gd@C82(OH)22, fluorescent nanodiamond (FND), halloysite clay nanotubes (HNTs), and titanium dioxide nanoparticles (TiO2-NPs)) using Caenorhabditis elegans. With the TiO2-NPs as an example, the relative safe property of TiO2-NPs at realistic concentrations was further discussed. Moreover, the recovery response of toxicity of TiO2-NPs after transfer to the normal conditions and the underlying mechanisms in nematodes were also introduced.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Leung MC, Williams PL, Benedetto A, Au C, Helmcke KJ, Aschner M, Meyer JN (2008) Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicol Sci 106:5–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhao Y-L, Wu Q-L, Li Y-P, Wang D-Y (2013) Translocation, transfer, and in vivo safety evaluation of engineered nanomaterials in the non-mammalian alternative toxicity assay model of nematode Caenorhabditis elegans. RSC Adv 3:5741–5757

    Article  CAS  Google Scholar 

  3. Wang D-Y (2016) Biological effects, translocation, and metabolism of quantum dots in nematode Caenorhabditis elegans. Toxicol Res 5:1003–1011

    Article  CAS  Google Scholar 

  4. Luo X, Xu S, Yang Y, Li L, Chen S, Xu A, Wu L (2016) Insights into the ecotoxicity of silver nanoparticles transferred from Escherichia coli to Caenorhabditis elegans. Sci Rep 6:36465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li J, Li D, Yang Y, Xu T, Li P, He D (2016) Acrylamide induces locomotor defects and degeneration of dopamine neurons in Caenorhabditis elegans. J Appl Toxicol 36:60–67

    Article  CAS  PubMed  Google Scholar 

  6. Zuo Y, Hu Y, Lu W, Cao J, Wang F, Han X, Lu W, Liu A (2016) Toxicity of 2,6-dichloro-1,4-benzoquinone and five regulated drinking water disinfection by-products for the Caenorhabditis elegans nematode. J Hazard Mater 321:456–463

    Article  CAS  PubMed  Google Scholar 

  7. Du H, Wang M, Wang L, Dai H, Wang M, Hong W, Nie X, Wu L, Xu A (2015) Reproductive toxicity of endosulfan: implication from germ cell apoptosis modulated by mitochondrial dysfunction and genotoxic response genes in Caenorhabditis elegans. Toxicol Sci 145(1):118–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wu Q-L, Han X-X, Wang D, Zhao F, Wang D-Y (2017) Coal combustion related fine particulate matter (PM2.5) induces toxicity in Caenorhabditis elegans by dysregulating microRNA expression. Toxicol Res 6:432–441

    Article  CAS  Google Scholar 

  9. Yang R-L, Rui Q, Kong L, Zhang N, Li Y, Wang X, Tao J, Tian P, Ma Y, Wei J, Li G, Wanng D (2016) Metallothioneins act downstream of insulin signaling to regulate toxicity of outdoor fine particulate matter (PM2.5) during spring festival in Beijing in nematode Caenorhabditis elegans. Toxicol Res 5:1097–1105

    Article  CAS  Google Scholar 

  10. Zhao L, Qu M, Wong G, Wang D-Y (2017) Transgenerational toxicity of nanopolystyrene particles in the range of μg/L in nematode Caenorhabditis elegans. Environ Sci Nano 4:2356–2366

    Article  CAS  Google Scholar 

  11. Xu J, Dou Y, Wei Z, Ma J, Deng Y, Li Y, Liu H, Dou S (2017) Recent progress in graphite intercalation compounds for rechargeable metal (Li, Na, K, Al)-ion batteries. Adv Sci 4(10):1700146

    Article  CAS  Google Scholar 

  12. Zhang B, Wei P, Zhou Z, Wei T (2016) Interactions of graphene with mammalian cells: molecular mechanisms and biomedical insights. Adv Drug Deliv Rev 105(Pt B):145–162

    Article  CAS  PubMed  Google Scholar 

  13. Shi L, Chen J, Teng L, Wang L, Zhu G, Liu S, Luo Z, Shi X, Wang Y, Ren L (2016) The antibacterial applications of graphene and its derivatives. Small 12(31):4165–4184

    Article  CAS  PubMed  Google Scholar 

  14. Chen YW, Su YL, Hu SH, Chen SY (2016) Functionalized graphene nanocomposites for enhancing photothermal therapy in tumor treatment. Adv Drug Deliv Rev 105(Pt B):190–204

    Article  CAS  PubMed  Google Scholar 

  15. Lin J, Chen X, Huang P (2016) Graphene-based nanomaterials for bioimaging. Adv Drug Deliv Rev 105(Pt B):242–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shim G, Kim MG, Park JY, Oh YK (2016) Graphene-based nanosheets for delivery of chemotherapeutics and biological drugs. Adv Drug Deliv Rev 105(Pt B):205–227

    Article  CAS  PubMed  Google Scholar 

  17. Ambrosi A, Chua CK, Latiff NM, Loo AH, Wong CH, Eng AY, Bonanni A, Pumera M (2016) Graphene and its electrochemistry – an update. Chem Soc Rev 45(9):2458–2493

    Article  PubMed  Google Scholar 

  18. Shin SR, Li YC, Jang HL, Khoshakhlagh P, Akbari M, Nasajpour A, Zhang YS, Tamayol A, Khademhosseini A (2016) Graphene-based materials for tissue engineering. Adv Drug Deliv Rev 105(Pt B):255–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Heerema SJ, Dekker C (2016) Graphene nanodevices for DNA sequencing. Nat Nanotechnol 11(2):127–136

    Article  CAS  PubMed  Google Scholar 

  20. Yoo JM, Kang JH, Hong BH (2015) Graphene-based nanomaterials for versatile imaging studies. Chem Soc Rev 44(14):4835–4852

    Article  CAS  PubMed  Google Scholar 

  21. Zanni E, De Bellis G, Bracciale MP, Broggi A, Santarelli ML, Sarto MS, Palleschi C, Uccelletti D (2012) Graphite nanoplatelets and Caenorhabditis elegans: insights from an in vivo model. Nano Lett 12:2740–2744

    Article  CAS  PubMed  Google Scholar 

  22. Wu JB, Lin ML, Cong X, Liu HN, Tan PH (2018) Raman spectroscopy of graphene-based materials and its applications in related devices. Chem Soc Rev. https://doi.org/10.1039/c6cs00915h

  23. Li K, Zhao X, Wei G, Su Z (2017) Recent advance in the cancer bioimaging with graphene quantum dots. Curr Med Chem. https://doi.org/10.2174/0929867324666170223154145

  24. Schroeder KL, Goreham RV, Nann T (2016) Graphene quantum dots for theranostics and bioimaging. Pharm Res 33(10):2337–2357

    Article  CAS  PubMed  Google Scholar 

  25. Gan Z, Xu H, Hao Y (2016) Mechanism for excitation-dependent photoluminescence from graphene quantum dots and other graphene oxide derivates: consensus, debates and challenges. Nanoscale 8(15):7794–7807

    Article  CAS  PubMed  Google Scholar 

  26. Du Y, Guo S (2016) Chemically doped fluorescent carbon and graphene quantum dots for bioimaging, sensor, catalytic and photoelectronic applications. Nanoscale 8(5):2532–2543

    Article  CAS  PubMed  Google Scholar 

  27. Zheng XT, Ananthanarayanan A, Luo KQ, Chen P (2015) Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11(14):1620–1636

    Article  CAS  PubMed  Google Scholar 

  28. Li L, Wu G, Yang G, Peng J, Zhao J, Zhu JJ (2013) Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale 5(10):4015–4039

    Article  CAS  PubMed  Google Scholar 

  29. Shen J, Zhu Y, Yang X, Li C (2012) Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun 48(31):3686–3699

    Article  CAS  Google Scholar 

  30. Liu Q, Guo B, Rao Z, Zhang B, Gong JR (2013) Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging. Nano Lett 13(6):2436–2341

    Article  CAS  PubMed  Google Scholar 

  31. Zhao Y-L, Liu Q, Shakoor S, Gong JR, Wang D-Y (2015) Transgenerational safe property of nitrogen-doped graphene quantum dots and the underlying cellular mechanism in Caenorhabditis elegans. Toxicol Res 4:270–280

    Article  CAS  Google Scholar 

  32. Zhao Y-L, Wu Q-L, Tang M, Wang D-Y (2014) The in vivo underlying mechanism for recovery response formation in nano-titanium dioxide exposed Caenorhabditis elegans after transfer to the normal condition. Nanomedicine 10:89–98

    Article  CAS  PubMed  Google Scholar 

  33. Li Y-X, Wang W, Wu Q-L, Li Y-P, Tang M, Ye B-P, Wang D-Y (2012) Molecular control of TiO2-NPs toxicity formation at predicted environmental relevant concentrations by Mn-SODs proteins. PLoS One 7(9):e44688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Qian W, Yan C, He D, Yu Y, Yuan L, Liu M, Luo G, Deng J (2018) pH-triggered charge-reversible of glycol chitosan conjugated carboxyl graphene for enhancing photothermal ablation of focal infection. Acta Biomater. https://doi.org/10.1016/j.actbio.2018.01.022

  35. Lalitha M, Lakshmipathi S (2017) Gas adsorption efficacy of graphene sheets functionalised with carboxyl, hydroxyl and epoxy groups in conjunction with Stone-Thrower-Wales (STW) and inverse stone-thrower-Wales (ISTW) defects. Phys Chem Chem Phys 19(45):30895–30913

    Article  CAS  PubMed  Google Scholar 

  36. Chiu NF, Fan SY, Yang CD, Huang TY (2017) Carboxyl-functionalized graphene oxide composites as SPR biosensors with enhanced sensitivity for immunoaffinity detection. Biosens Bioelectron 89(Pt 1):370–376

    Article  CAS  PubMed  Google Scholar 

  37. Wu Q, Sun Y, Zhang D, Li S, Wang X, Song D (2016) Magnetic field-assisted SPR biosensor based on carboxyl-functionalized graphene oxide sensing film and Fe3O4-hollow gold nanohybrids probe. Biosens Bioelectron 86:95–101

    Article  CAS  PubMed  Google Scholar 

  38. Xie B, Chen Y, Yu M, Shen X, Lei H, Xie T, Zhang Y, Wu Y (2015) Carboxyl-assisted synthesis of nitrogen-doped graphene sheets for supercapacitor applications. Nanoscale Res Lett 10(1):1031

    PubMed  Google Scholar 

  39. Sasidharan A, Sivaram AJ, Retnakumari AP, Chandran P, Malarvizhi GL, Nair S, Koyakutty M (2015) Radiofrequency ablation of drug-resistant cancer cells using molecularly targeted carboxyl-functionalized biodegradable graphene. Adv Healthc Mater 4(5):679–684

    Article  CAS  PubMed  Google Scholar 

  40. Liang B, Fang L, Yang G, Hu Y, Guo X, Ye X (2013) Direct electron transfer glucose biosensor based on glucose oxidase self-assembled on electrochemically reduced carboxyl graphene. Biosens Bioelectron 43:131–136

    Article  CAS  PubMed  Google Scholar 

  41. Yang J-N, Zhao Y-L, Wang Y-W, Wang H-F, Wang D-Y (2015) Toxicity evaluation and translocation of carboxyl functionalized graphene in Caenorhabditis elegans. Toxicol Res 4:1498–1510

    Article  CAS  Google Scholar 

  42. McGhee JD (2007) Intestine. WormBook. https://doi.org/10.1895/wormbook.1.133.1

  43. Liu J, Kang SG, Wang P, Wang Y, Lv X, Liu Y, Wang F, Gu Z, Yang Z, Weber JK, Tao N, Qin Z, Miao Q, Chen C, Zhou R, Zhao Y (2018) Molecular mechanism of Gd@C82(OH)22 increasing collagen expression: implication for encaging tumor. Biomaterials 152:24–36

    Article  CAS  PubMed  Google Scholar 

  44. Kang SG, Araya-Secchi R, Wang D, Wang B, Huynh T, Zhou R (2014) Dual inhibitory pathways of metallofullerenol Gd@C82(OH)22 on matrix metalloproteinase-2: molecular insight into drug-like nanomedicine. Sci Rep 4:4775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Song Y, Jin J, Li J, He R, Zhang M, Chang Y, Chen K, Wang Y, Sun B, Xing G (2014) Gd@C82(OH)22 nanoparticles constrain macrophages migration into tumor tissue to prevent metastasis. J Nanosci Nanotechnol 14(6):4022–4028

    Article  CAS  PubMed  Google Scholar 

  46. Meng J, Liang X, Chen X, Zhao Y (2013) Biological characterizations of [Gd@C82(OH)22]n nanoparticles as fullerene derivatives for cancer therapy. Integr Biol 5(1):43–47

    Article  CAS  Google Scholar 

  47. Kang SG, Zhou G, Yang P, Liu Y, Sun B, Huynh T, Meng H, Zhao L, Xing G, Chen C, Zhao Y, Zhou R (2012) Molecular mechanism of pancreatic tumor metastasis inhibition by Gd@C82(OH)22 and its implication for de novo design of nanomedicine. Proc Natl Acad Sci USA 109(38):15431–15436

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wang B, Yang D, Sun B, Wei X, Guo H, Liu X, Ying G, Niu R, Zhang N, Ma Y (2011) An anti-tumor nanoparticle, [Gd@C82(OH)22]n, induces macrophage activation. J Nanosci Nanotechnol 11(3):2321–2329

    Article  CAS  PubMed  Google Scholar 

  49. Chen C, Xing G, Wang J, Zhao Y, Li B, Tang J, Jia G, Wang T, Sun J, Xing L, Yuan H, Gao Y, Meng H, Chen Z, Zhao F, Chai Z, Fang X (2005) Multihydroxylated [Gd@C82(OH)22]n nanoparticles: antineoplastic activity of high efficiency and low toxicity. Nano Lett 5(10):2050–2057

    Article  CAS  PubMed  Google Scholar 

  50. Zhang W, Sun B, Zhang L, Zhao B, Nie G, Zhao Y (2011) Biosafety assessment of Gd@C82(OH)22 nanoparticles on Caenorhabditis elegans. Nanoscale 3:2636–2641

    Article  CAS  PubMed  Google Scholar 

  51. Zhang L, Jie G, Zhang J, Zhao B (2009) Significant longevity-extending effects of EGCG on Caenorhabditis elegans under stress. Free Radic Biol Med 46(3):414–421

    Article  CAS  PubMed  Google Scholar 

  52. Beckman KB, Ames BN (1997) Oxidative decay of DNA. J Biol Chem 272(32):19633–19636

    Article  CAS  PubMed  Google Scholar 

  53. Lithgow GJ, White TM, Melov S, Johnson TE (1995) Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc Natl Acad Sci USA 92(16):7540–7544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Muñoz MJ, Riddle DL (2003) Positive selection of Caenorhabditis elegans mutants with increased stress resistance and longevity. Genetics 163(1):171–180

    PubMed  PubMed Central  Google Scholar 

  55. Santacruz-Gomez K, Sarabia-Sainz A, Acosta-Elias M, Sarabia-Sainz M, Janetanakit W, Khosla N, Melendrez R, Pedroza-Montero M, Lal R (2018) Antioxidant activity of hydrated carboxylated nanodiamonds and its influence on water γ-radiolysis. Nanotechnology. https://doi.org/10.1088/1361-6528/aaa80e

  56. Sotoma S, Hsieh FJ, Chen YW, Tsai PC, Chang HC (2018) Highly stable lipid-encapsulation of fluorescent nanodiamonds for bioimaging applications. Chem Commun 54(8):1000–1003

    Article  CAS  Google Scholar 

  57. Huang H, Liu M, Jiang R, Chen J, Mao L, Wen Y, Tian J, Zhou N, Zhang X, Wei Y (2017) Facile modification of nanodiamonds with hyperbranched polymers based on supramolecular chemistry and their potential for drug delivery. J Colloid Interface Sci 513:198–204

    Article  CAS  PubMed  Google Scholar 

  58. Basu S, Pacelli S, Wang J, Paul A (2017) Adoption of nanodiamonds as biomedical materials for bone repair. Nanomedicine 12(24):2709–2713

    Article  CAS  PubMed  Google Scholar 

  59. Song N, Cui S, Hou X, Ding P, Shi L (2017) Significant enhancement of thermal conductivity in nanofibrillated cellulose films with low mass fraction of nanodiamond. ACS Appl Mater Interfaces 9(46):40766–40773

    Article  CAS  PubMed  Google Scholar 

  60. Chen TM, Tian XM, Huang L, Xiao J, Yang GW (2017) Nanodiamonds as pH-switchable oxidation and reduction catalysts with enzyme-like activities for immunoassay and antioxidant applications. Nanoscale 9(40):15673–15684

    Article  CAS  PubMed  Google Scholar 

  61. Lim DG, Rajasekaran N, Lee D, Kim NA, Jung HS, Hong S, Shin YK, Kang E, Jeong SH (2017) Polyamidoamine-decorated nanodiamonds as a hybrid gene delivery vector and siRNA structural characterization at the charged interfaces. ACS Appl Mater Interfaces 9(37):31543–31556

    Article  CAS  PubMed  Google Scholar 

  62. Whitlow J, Pacelli S, Paul A (2017) Multifunctional nanodiamonds in regenerative medicine: recent advances and future directions. J Control Release 261:62–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lee H, Lee C, Kim JH (2017) Response to comment on “Activation of persulfate by graphitized nanodiamonds for removal of organic compounds”. Environ Sci Technol 51(9):5353–5354

    Article  CAS  PubMed  Google Scholar 

  64. Ong SY, Chipaux M, Nagl A, Schirhagl R (2017) Shape and crystallographic orientation of nanodiamonds for quantum sensing. Phys Chem Chem Phys 19(17):10748–10752

    Article  CAS  PubMed  Google Scholar 

  65. Suarez-Kelly LP, Campbell AR, Rampersaud IV, Bumb A, Wang MS, Butchar JP, Tridandapani S, Yu L, Rampersaud AA, Carson WE 3rd. (2017) Fluorescent nanodiamonds engage innate immune effector cells: a potential vehicle for targeted anti-tumor immunotherapy. Nanomedicine 13(3):909–920

    Article  CAS  PubMed  Google Scholar 

  66. Mohan N, Chen C, Hsieh H, Wu Y, Chang H (2010) In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Lett 10:3692–3699

    Article  CAS  PubMed  Google Scholar 

  67. Zhao Y-L, Yang R-L, Rui Q, Wang D-Y (2016) Intestinal insulin signaling encodes two different molecular mechanisms for the shortened longevity induced by graphene oxide in Caenorhabditis elegans. Sci Rep 6:24024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ren M-X, Zhao L, Lv X, Wang D-Y (2017) Antimicrobial proteins in the response to graphene oxide in Caenorhabditis elegans. Nanotoxicology 11(4):578–590

    Article  CAS  PubMed  Google Scholar 

  69. Zhuang Z-H, Li M, Li H, Luo L-B, Gu W-D, Wu Q-L, Wang D-Y (2016) Function of RSKS-1-AAK-2-DAF-16 signaling cascade in enhancing toxicity of multi-walled carbon nanotubes can be suppressed by mir-259 activation in Caenorhabditis elegans. Sci Rep 6:32409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhao Y-L, Zhi L-T, Wu Q-L, Yu Y-L, Sun Q-Q, Wang D-Y (2016) p38 MAPK-SKN-1/Nrf signaling cascade is required for intestinal barrier against graphene oxide toxicity in Caenorhabditis elegans. Nanotoxicology 10(10):1469–1479

    Article  CAS  PubMed  Google Scholar 

  71. Li W-J, Wang D-Y, Wang D-Y (2018) Regulation of the response of Caenorhabditis elegans to simulated microgravity by p38 mitogen-activated protein kinase signaling. Sci Rep 8:857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Inoue H, Hisamoto N, An JH, Oliveira RP, Nishida E, Blackwell TK, Matsumoto K (2005) The C. elegans p38 MAPK pathway regulates nuclear localization of the transcription factor SKN-1 in oxidative stress response. Genes Dev 19(19):2278–2283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang J, Robida-Stubbs S, Tullet JM, Rual JF, Vidal M, Blackwell TK (2010) RNAi screening implicates a SKN-1-dependent transcriptional response in stress resistance and longevity deriving from translation inhibition. PLoS Genet 6(8):e1001048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Li K, Zhang Y, Chen M, Hu Y, Jiang W, Zhou L, Li S, Xu M, Zhao Q, Wan R (2017) Enhanced antitumor efficacy of doxorubicin-encapsulated halloysite nanotubes. Int J Nanomedicine 13:19–30

    Article  PubMed  PubMed Central  Google Scholar 

  75. Long Z, Zhang J, Shen Y, Zhou C, Liu M (2017) Polyethyleneimine grafted short halloysite nanotubes for gene delivery. Mater Sci Eng C Mater Biol Appl 81:224–235

    Article  CAS  PubMed  Google Scholar 

  76. Hu Y, Chen J, Li X, Sun Y, Huang S, Li Y, Liu H, Xu J, Zhong S (2017) Multifunctional halloysite nanotubes for targeted delivery and controlled release of doxorubicin in-vitro and in-vivo studies. Nanotechnology 28(37):375101

    Article  PubMed  Google Scholar 

  77. Peng H, Liu X, Tang W, Ma R (2017) Facile synthesis and characterization of ZnO nanoparticles grown on halloysite nanotubes for enhanced photocatalytic properties. Sci Rep 7(1):2250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Makaremi M, Pasbakhsh P, Cavallaro G, Lazzara G, Aw YK, Lee SM, Milioto S (2017) Effect of morphology and size of halloysite nanotubes on functional pectin bionanocomposites for food packaging applications. ACS Appl Mater Interfaces 9(20):17476–17488

    Article  CAS  PubMed  Google Scholar 

  79. Zhou T, Jia L, Luo YF, Xu J, Chen RH, Ge ZJ, Ma TL, Chen H, Zhu TF (2016) Multifunctional nanocomposite based on halloysite nanotubes for efficient luminescent bioimaging and magnetic resonance imaging. Int J Nanomedicine 11:4765–4776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Fakhrullin RF, Lvov YM (2016) Halloysite clay nanotubes for tissue engineering. Nanomedicine 11(17):2243–2246

    Article  CAS  PubMed  Google Scholar 

  81. Zeng G, He Y, Zhan Y, Zhang L, Pan Y, Zhang C, Yu Z (2016) Novel polyvinylidene fluoride nanofiltration membrane blended with functionalized halloysite nanotubes for dye and heavy metal ions removal. J Hazard Mater 317:60–72

    Article  CAS  PubMed  Google Scholar 

  82. Tully J, Yendluri R, Lvov Y (2016) Halloysite clay nanotubes for enzyme immobilization. Biomacromolecules 17(2):615–621

    Article  CAS  PubMed  Google Scholar 

  83. Zhang H, Ren T, Ji Y, Han L, Wu Y, Song H, Bai L, Ba X (2015) Selective modification of halloysite nanotubes with 1-pyrenylboronic acid: a novel fluorescence probe with highly selective and sensitive response to hyperoxide. ACS Appl Mater Interf 7(42):23805–23811

    Article  CAS  Google Scholar 

  84. Lvov Y, Wang W, Zhang L, Fakhrullin R (2016) Halloysite clay nanotubes for loading and sustained release of functional compounds. Adv Mater 28(6):1227–1250

    Article  CAS  PubMed  Google Scholar 

  85. Jana S, Das S, Ghosh C, Maity A, Pradhan M (2015) Halloysite nanotubes capturing isotope selective atmospheric CO2. Sci Rep 5:8711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Fakhrullina GI, Akhatova FS, Lvovb YM, Fakhrullin RF (2015) Toxicity of halloysite clay nanotubes in vivo: a Caenorhabditis elegans study. Environ Sci Nano 2:54–59

    Article  CAS  Google Scholar 

  87. Wu T, Tang M (2018) The inflammatory response to silver and titanium dioxide nanoparticles in the central nervous system. Nanomedicine 13(2):233–249

    Article  CAS  PubMed  Google Scholar 

  88. Liu K, Lin X, Zhao J (2013) Toxic effects of the interaction of titanium dioxide nanoparticles with chemicals or physical factors. Int J Nanomedicine 8:2509–2520

    PubMed  PubMed Central  Google Scholar 

  89. Shi H, Magaye R, Castranova V, Zhao J (2013) Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol 10:15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wu Q-L, Wang W, Li Y-X, Li Y-P, Ye B-P, Tang M, Wang D-Y (2012) Small sizes of TiO2-NPs exhibit adverse effects at predicted environmental relevant concentrations on nematodes in a modified chronic toxicity assay system. J Hazard Mater 243:161–168

    Article  CAS  PubMed  Google Scholar 

  91. Wu Q-L, Nouara A, Li Y-P, Zhang M, Wang W, Tang M, Ye B-P, Ding J-D, Wang D-Y (2013) Comparison of toxicities from three metal oxide nanoparticles at environmental relevant concentrations in nematode Caenorhabditis elegans. Chemosphere 90:1123–1131

    Article  CAS  PubMed  Google Scholar 

  92. Wu Q-L, Zhao Y-L, Li Y-P, Wang D-Y (2014) Susceptible genes regulate the adverse effects of TiO2-NPs at predicted environmental relevant concentrations on nematode Caenorhabditis elegans. Nanomedicine 10:1263–1271

    Article  CAS  PubMed  Google Scholar 

  93. Wang H, Wick RL, Xing B (2009) Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environ Pollut 157:1171–1177

    Article  CAS  PubMed  Google Scholar 

  94. Khare P, Sonane M, Pandey R, Ali S, Gupta KC, Satish A (2011) Adverse effects of TiO2 and ZnO nanoparticles in soil nematode, Caenorhabditis elegans. J Biomed Nanotechnol 7:116–117

    Article  CAS  PubMed  Google Scholar 

  95. Rui Q, Zhao Y-L, Wu Q-L, Tang M, Wang D-Y (2013) Biosafety assessment of titanium dioxide nanoparticles in acutely exposed nematode Caenorhabditis elegans with mutations of genes required for oxidative stress or stress response. Chemosphere 93(10):2289–2296

    Article  CAS  PubMed  Google Scholar 

  96. Shen L-L, Xiao J, Ye H-Y, Wang D-Y (2009) Toxicity evaluation in nematode Caenorhabditis elegans after chronic metal exposure. Environ Toxicol Pharmacol 28:125–132

    Article  CAS  PubMed  Google Scholar 

  97. Chen X, Cheng B, Yang Y, Cao A, Liu J, Du L, Liu Y, Zhao Y, Wang H (2013) Characterization and preliminary toxicity assays of nano-titanium dioxide additive in sugar-coated chewing gum. Small 9(9–10):1765–1774

    Article  CAS  PubMed  Google Scholar 

  98. Nouara A, Wu Q-L, Li Y-X, Tang M, Wang H-F, Zhao Y-L, Wang D-Y (2013) Carboxylic acid functionalization prevents the translocation of multi-walled carbon nanotubes at predicted environmental relevant concentrations into targeted organs of nematode Caenorhabditis elegans. Nanoscale 5:6088–6096

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, D. (2018). Confirmation of Nanomaterials with Low-Toxicity or Non-toxicity Property. In: Nanotoxicology in Caenorhabditis elegans. Springer, Singapore. https://doi.org/10.1007/978-981-13-0233-6_9

Download citation

Publish with us

Policies and ethics