Skip to main content

Molecular Mechanisms of Nanotoxicity Formation

  • Chapter
  • First Online:
Nanotoxicology in Caenorhabditis elegans
  • 379 Accesses

Abstract

Based on the conserved property of molecular events, signal transduction pathways, epigenetic marks, and the homology of approximately 45% genes in Caenorhabditis elegans to human genome, C. elegans has the important potentials for the elucidation of underlying molecular mechanisms of toxicity induced by engineered nanomaterials (ENMs). We here introduced the functions and the underlying molecular mechanisms of some important signaling pathways in the regulation of nanotoxicity formation, and these signaling pathways mainly include apoptosis signaling pathway, DNA damage signaling pathway, MAPK signaling pathways, insulin signaling pathway, innate immune response signaling pathway, Wnt signaling pathway, TGF-beta signaling pathway, developmental timing control-related signals, and neurotransmission-related signals. We also systematically introduced the functions and the underlying molecular basis for microRNAs and long noncoding RNAs in the regulation of nanotoxicity formation based on the clues from the omics study performed in nematodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feng J, Bussiere F, Hekimi S (2001) Mitochondrial electron transport is a key determinant of life span in Caenorhabditis elegans. Dev Cell 1:633–644

    Article  CAS  PubMed  Google Scholar 

  2. Ishii N, Fujii M, Hartman PS, Tsuda M, Yasuda K, Senoo-Matsuda N, Yanase S, Ayusawa D, Suzuki K (1998) A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematodes. Nature 394:694–697

    Article  CAS  PubMed  Google Scholar 

  3. Kayser EB, Morgan PG, Hoppel CL, Sedensky MM (2001) Mitochondrial expression and function of GAS-1 in Caenorhabditis elegans. J Biol Chem 276:20551–20558

    Article  PubMed  CAS  Google Scholar 

  4. Miyadera H, Amino H, Hiraishi A, Taka H, Murayama K, Miyoshi H, Sakamoto K, Ishii N, Hekimi S, Kita K (2001) Altered quinone biosynthesis in the long-lived clk-1 mutants of Caenorhabditis elegans. J Biol Chem 276:7713–7716

    Article  CAS  PubMed  Google Scholar 

  5. Wu Q-L, Yin L, Li X, Tang M, Zhang T, Wang D-Y (2013) Contributions of altered permeability of intestinal barrier and defecation behavior to toxicity formation from graphene oxide in nematode Caenorhabditis elegans. Nanoscale 5(20):9934–9943

    Article  CAS  PubMed  Google Scholar 

  6. Li Y-X, Wang W, Wu Q-L, Li Y-P, Tang M, Ye B-P, Wang D-Y (2012) Molecular control of TiO2-NPs toxicity formation at predicted environmental relevant concentrations by Mn-SODs proteins. PLoS One 7(9):e44688

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Li Y-X, Yu S-H, Wu Q-L, Tang M, Pu Y-P, Wang D-Y (2012) Chronic Al2O3-nanoparticle exposure causes neurotoxic effects on locomotion behaviors by inducing severe ROS production and disruption of ROS defense mechanisms in nematode Caenorhabditis elegans. J Hazard Mater 219–220:221–230

    Article  PubMed  CAS  Google Scholar 

  8. Wu Q-L, Zhao Y-L, Li Y-P, Wang D-Y (2014) Molecular signals regulating translocation and toxicity of graphene oxide in nematode Caenorhabditis elegans. Nanoscale 6:11204–11212

    Article  PubMed  CAS  Google Scholar 

  9. Lettre G, Hengartner MO (2006) Developmental apoptosis in C. elegans: a complex CEDnario. Ann Rev Mol Cell Biol 7:97–108

    Article  CAS  Google Scholar 

  10. Zhao Y-L, Wu Q-L, Wang D-Y (2016) An epigenetic signal encoded protection mechanism is activated by graphene oxide to inhibit its induced reproductive toxicity in Caenorhabditis elegans. Biomaterials 79:15–24

    Article  CAS  PubMed  Google Scholar 

  11. O’Neil N, Rose A (2006) DNA repair. WormBook. https://doi.org/10.1895/wormbook.1.54.1.

  12. Kamath RK, Martinez-Campos M, Zipperlen P, Fraser AG, Ahringer J (2001) Effectiveness of specific RNA-mediated interference through ingested double stranded RNA in C. elegans. Genome Biol 2:1–10

    Google Scholar 

  13. Koga M, Zwaal R, Guan KL, Avery L, Ohshima Y (2000) A Caenorhabditis elegans MAP kinase kinase, MEK-1, is involved in stress responses. EMBO J 19:5148–5156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Zhao Y-L, Wu Q-L, Wang D-Y (2015) A microRNAs-mRNAs network involved in the control of graphene oxide toxicity in Caenorhabditis elegans. RSC Adv 5:92394–92405

    Article  CAS  Google Scholar 

  15. Qu M, Li Y-H, Wu Q-L, Xia Y-K, Wang D-Y (2017) Neuronal ERK signaling in response to graphene oxide in nematode Caenorhabditis elegans. Nanotoxicology 11(4):520–533

    Article  CAS  PubMed  Google Scholar 

  16. Okuyama T, Inoue H, Ookuma S, Satoh T, Kano K, Honjoh S, Hisamoto N, Matsumoto K, Nishida E (2010) The ERK-MAPK pathway regulates longevity through SKN-1 and insulin-like signaling in Caenorhabditis elegans. J Biol Chem 285:30274–30281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Tullet JM, Hertweck M, An JH, Baker J, Hwang JY, Liu S, Oliveira RP, Baumeister R, Blackwell TK (2008) Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell 132:1025–1038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Shephard F, Adenle AA, Jacobson LA, Szewczyk NJ (2011) Identification and functional clustering of genes regulating muscle protein degradation from amongst the known C. elegans muscle mutants. PLoS One 6:e24686

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Zhao Y-L, Zhi L-T, Wu Q-L, Yu Y-L, Sun Q-Q, Wang D-Y (2016) p38 MAPK-SKN-1/Nrf signaling cascade is required for intestinal barrier against graphene oxide toxicity in Caenorhabditis elegans. Nanotoxicology 10(10):1469–1479

    Article  CAS  PubMed  Google Scholar 

  20. Blackwell TK, Steinbaugh MJ, Hourihan JM, Ewald CY (2015) SKN-1/Nrf, stress responses, and aging in Caenorhabditis elegans. Free Radic Biol Med 88:290–301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Lim D, Roh JY, Eom HJ, Choi JY, Hyun J, Choi J (2012) Oxidative stress-related PMK-1 P38 MAPK activation as a mechanism for toxicity of silver nanoparticles to reproduction in the nematode Caenorhabditis elegans. Environ Toxicol Chem 31(3):585–592

    Article  CAS  PubMed  Google Scholar 

  22. Chatterjee N, Eom HJ, Choi J (2014) Effects of silver nanoparticles on oxidative DNA damage-repair as a function of p38 MAPK status: a comparative approach using human Jurkat T cells and the nematode Caenorhabditis elegans. Environ Mol Mutagen 55(2):122–133

    Article  PubMed  CAS  Google Scholar 

  23. Kenyon C (2010) The genetics of ageing. Nature 464:504–512

    Article  CAS  PubMed  Google Scholar 

  24. Lapierre LR, Hansen M (2012) Lessons from C. elegans: signaling pathways for longevity. Trend Endocrinol Metab 23:637–644

    Article  CAS  Google Scholar 

  25. Zhao Y-L, Yang R-L, Rui Q, Wang D-Y (2016) Intestinal insulin signaling encodes two different molecular mechanisms for the shortened longevity induced by graphene oxide in Caenorhabditis elegans. Sci Rep 6:24024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Jensen VL, Simonsen KT, Lee Y-H, Park D, Riddle DL (2010) RNAi screen of DAF-16/FOXO target genes in C. elegans links pathogenesis and dauer formation. PLoS One 5:e15902

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. McElwee J, Bubb K, Thomas JH (2003) Transcriptional outputs of the Caenorhabditis elegans forkhead protein DAF-16. Aging Cell 2:111–121

    Article  PubMed  CAS  Google Scholar 

  28. Murphy CT, McGarroll SA, Bargmann CI, Fraser A, Kamath RS, Ahringer J, Kenyon C (2003) Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424:277–284

    Article  PubMed  CAS  Google Scholar 

  29. Tepper RG, Ashraf J, Kaletsky R, Kleemann G, Murphy CT, Bussemaker HJ (2013) PQM-1 complements DAF-16 as a key transcriptional regulator of DAF-2-mediated development and longevity. Cell 154:676–690

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Ren M-X, Zhao L, Lv X, Wang D-Y (2017) Antimicrobial proteins in the response to graphene oxide in Caenorhabditis elegans. Nanotoxicology 11(4):578–590

    Article  CAS  PubMed  Google Scholar 

  31. Wu Q-L, Zhao Y-L, Fang J-P, Wang D-Y (2014) Immune response is required for the control of in vivo translocation and chronic toxicity of graphene oxide. Nanoscale 6:5894–5906

    Article  PubMed  CAS  Google Scholar 

  32. Zhi L-T, Ren M-X, Qu M, Zhang H-Y, Wang D-Y (2016) Wnt ligands differentially regulate toxicity and translocation of graphene oxide through different mechanisms in Caenorhabditis elegans. Sci Rep 6:39261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Eisenmann DM (2005) Wnt signaling. WormBook. https://doi.org/10.1895/wormbook.1.7.1.

  34. Zhi L-T, Qu M, Ren M-X, Zhao L, Li Y-H, Wang D-Y (2017) Graphene oxide induces canonical Wnt/β-catenin signaling-dependent toxicity in Caenorhabditis elegans. Carbon 113:122–131

    Article  CAS  Google Scholar 

  35. Eisenmann DM, Maloof JN, Simske JS, Kenyon CJ, Kim SK (1998) The beta-catenin homolog BAR-1 and LET-60 Ras coordinately regulate the Hox gene lin-39 during Caenorhabditis elegans vulval development. Development 125:3667–3680

    PubMed  CAS  Google Scholar 

  36. Maloof JN, Whangbo J, Harris JM, Jongeward GD, Kenyon C (1999) A Wnt signaling pathway controls hox gene expression and neuroblast migration in C. elegans. Development 126:37–49

    PubMed  CAS  Google Scholar 

  37. Sokol NS (2012) Small temporal RNAs in animal development. Curr Opin Genet Dev 22:368–373

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Reinhart B, Slack F, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21 nucleotide let-7 RNA regulates C. elegans developmental timing. Nature 403:901–906

    Article  CAS  PubMed  Google Scholar 

  39. Zhao L, Wan H-X, Liu Q-Z, Wang D-Y (2017) Multi-walled carbon nanotubes-induced alterations in microRNA let-7 and its targets activate a protection mechanism by conferring a developmental timing control. Part Fibre Toxicol 14:27

    Article  PubMed  PubMed Central  Google Scholar 

  40. Niwa R, Hada K, Moliyama K, Ohniwa RL, Tan YM, Olsson-Carter K, Chi W, Reinke V, Slack FJ (2009) C. elegans sym-1 is a downstream target of the hunchback-like-1 developmental timing transcription factor. Cell Cycle 8:4147–4154

    Article  PubMed  CAS  Google Scholar 

  41. Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S, Ha I, Baillie DL, Fire A, Ruvkun G, Mello CC (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106:23–34

    Article  PubMed  CAS  Google Scholar 

  42. Li Y-X, Yu S-H, Wu Q-L, Tang M, Wang D-Y (2013) Transmissions of serotonin, dopamine and glutamate are required for the formation of neurotoxicity from Al2O3-NPs in nematode Caenorhabditis elegans. Nanotoxicology 7(5):1004–1013

    Article  PubMed  CAS  Google Scholar 

  43. Iwasaki K, Staunton J, Saifee O, Nonet ML, Thomas JH (1997) aex-3 encodes a novel regulator of presynaptic activity in C. elegans. Neuron 18:613–622

    Article  PubMed  CAS  Google Scholar 

  44. Iwasaki K, Toyonaga R (2000) The Rab3 GDP/GTP exchange factor homolog AEX-3 has a dual function in synaptic transmission. EMBO J 19:4806–4816

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Wu Q-L, Zhou X-F, Han X-X, Zhuo Y-Z, Zhu S-T, Zhao Y-L, Wang D-Y (2016) Genome-wide identification and functional analysis of long noncoding RNAs involved in the response to graphene oxide. Biomaterials 102:277–291

    Article  PubMed  CAS  Google Scholar 

  46. Starnes DL, Lichtenberg SS, Unrine JM, Starnes CP, Oostveen EK, Lowry GV, Bertsch PM, Tsyusko OV (2016) Distinct transcriptomic responses of Caenorhabditis elegans to pristine and sulfidized silver nanoparticles. Environ Pollut 213:314–321

    Article  PubMed  CAS  Google Scholar 

  47. Wu Q-L, Zhao Y-L, Zhao G, Wang D-Y (2014) microRNAs control of in vivo toxicity from graphene oxide in Caenorhabditis elegans. Nanomedicine: Nanotechnol Biol Med 10:1401–1410

    Article  CAS  Google Scholar 

  48. Yang R-L, Ren M-X, Rui Q, Wang D-Y (2016) A mir-231-regulated protection mechanism against the toxicity of graphene oxide in nematode Caenorhabditis elegans. Sci Rep 6:32214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166

    Article  PubMed  CAS  Google Scholar 

  50. Guttman M, Rinn JL (2012) Modular regulatory principles of large non-coding RNAs. Nature 482:339–346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Ulitsky I, Bartel DP (2013) LincRNAs: genomics, evolution, and mechanisms. Cell 154:26–46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Chen LL, Carmichael GG (2010) Decoding the function of nuclear long non-coding RNAs. Curr Opin Cell Biol 22:357–364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, D. (2018). Molecular Mechanisms of Nanotoxicity Formation. In: Nanotoxicology in Caenorhabditis elegans. Springer, Singapore. https://doi.org/10.1007/978-981-13-0233-6_7

Download citation

Publish with us

Policies and ethics