Skip to main content

Values of C. elegans in Toxicological Study

  • Chapter
  • First Online:
Nanotoxicology in Caenorhabditis elegans

Abstract

The model animal of nematode Caenorhabditis elegans has become an important in vivo alternative assay system for toxicological study of different environmental toxicants or stresses. We here introduced the several important values of C. elegans in the toxicological study for environmental toxicants or stresses. Meanwhile, we also discussed the limitations of nematodes for the toxicological study of environmental toxicants or stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leung MC, Williams PL, Benedetto A, Au C, Helmcke KJ, Aschner M, Meyer JN (2008) Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicol Sci 106:5–28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Zhao Y-L, Wu Q-L, Li Y-P, Wang D-Y (2013) Translocation, transfer, and in vivo safety evaluation of engineered nanomaterials in the non-mammalian alternative toxicity assay model of nematode Caenorhabditis elegans. RSC Adv 3:5741–5757

    Article  CAS  Google Scholar 

  3. Charão MF, Souto C, Brucker N, Barth A, Sjornada D, Fagundez D, Ávila DS, Eifler-Lima VL, Sguterres S, Rpohlmann A, Garcia SC (2015) Caenorhabditis elegans as an alternative in vivo model to determine oral uptake, nanotoxicity, and efficacy of melatonin-loaded lipid-core nanocapsules on paraquat damage. Int J Nanomedicine 10:5093–5106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    PubMed  PubMed Central  CAS  Google Scholar 

  5. Ma H, Bertsch PM, Glenn TC, Kabengi NJ, Williams PL (2009) Toxicity of manufactured zinc oxide nanoparticles in the nematode Caenorhabditis elegans. Environ Toxicol Chem 28(6):1324–1330

    Article  CAS  PubMed  Google Scholar 

  6. Wang D-Y, Wang Y (2008) Phenotypic and behavioral defects caused by barium exposure in nematode Caenorhabditis elegans. Arch Environ Contam Toxicol 54(3):447–453

    Article  PubMed  CAS  Google Scholar 

  7. Yang J-N, Zhao Y-L, Wang Y-W, Wang H-F, Wang D-Y (2015) Toxicity evaluation and translocation of carboxyl functionalized graphene in Caenorhabditis elegans. Toxicol Res 4:1498–1510

    Article  CAS  Google Scholar 

  8. Zhao Y-L, Wu Q-L, Wang D-Y (2016) An epigenetic signal encoded protection mechanism is activated by graphene oxide to inhibit its induced reproductive toxicity in Caenorhabditis elegans. Biomaterials 79:15–24

    Article  CAS  PubMed  Google Scholar 

  9. Liu P-D, He K-W, Li Y-X, Wu Q-L, Yang P, Wang D-Y (2012) Exposure to mercury causes formation of male-specific structural deficits by inducing oxidative damage in nematodes. Ecotoxicol Environ Saf 79:90–100

    Article  PubMed  CAS  Google Scholar 

  10. Li Y-X, Yu S-H, Wu Q-L, Tang M, Pu Y-P, Wang D-Y (2012) Chronic Al2O3-nanoparticle exposure causes neurotoxic effects on locomotion behaviors by inducing severe ROS production and disruption of ROS defense mechanisms in nematode Caenorhabditis elegans. J Hazard Mater 219-220:221–230

    Article  PubMed  CAS  Google Scholar 

  11. Wu Q-L, Liu P-D, Li Y-X, Du M, Xing X-J, Wang D-Y (2012) Inhibition of ROS elevation and damage on mitochondrial function prevents lead-induced neurotoxic effects on structures and functions of AFD neurons in Caenorhabditis elegans. J Environ Sci 24(4):733–742

    Article  CAS  Google Scholar 

  12. Wu Q-L, Nouara A, Li Y-P, Zhang M, Wang W, Tang M, Ye B-P, Ding J-D, Wang D-Y (2013) Comparison of toxicities from three metal oxide nanoparticles at environmental relevant concentrations in nematode Caenorhabditis elegans. Chemosphere 90:1123–1131

    Article  PubMed  CAS  Google Scholar 

  13. Zhao Y-L, Zhi L-T, Wu Q-L, Yu Y-L, Sun Q-Q, Wang D-Y (2016) p38 MAPK-SKN-1/Nrf signaling cascade is required for intestinal barrier against graphene oxide toxicity in Caenorhabditis elegans. Nanotoxicology 10(10):1469–1479

    Article  CAS  PubMed  Google Scholar 

  14. Zhao L, Rui Q, Wang D-Y (2017) Molecular basis for oxidative stress induced by simulated microgravity in nematode Caenorhabditis elegans. Sci Total Environ 607-608:1381–1390

    Article  PubMed  CAS  Google Scholar 

  15. Zhao Y-L, Yang R-L, Rui Q, Wang D-Y (2016) Intestinal insulin signaling encodes two different molecular mechanisms for the shortened longevity induced by graphene oxide in Caenorhabditis elegans. Sci Rep 6:24024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Wu Q-L, Zhao Y-L, Zhao G, Wang D-Y (2014) microRNAs control of in vivo toxicity from graphene oxide in Caenorhabditis elegans. Nanomed Nanotechnol Biol Med 10:1401–1410

    Article  CAS  Google Scholar 

  17. Yu S-H, Rui Q, Cai T, Wu Q-L, Li Y-X, Wang D-Y (2011) Close association of intestinal autofluorescence with the formation of severe oxidative damage in intestine of nematodes chronically exposed to Al2O3-nanoparticle. Environ Toxicol Pharmacol 32:233–241

    Article  PubMed  CAS  Google Scholar 

  18. Wu Q-L, Zhao Y-L, Fang J-P, Wang D-Y (2014) Immune response is required for the control of in vivo translocation and chronic toxicity of graphene oxide. Nanoscale 6:5894–5906

    Article  PubMed  CAS  Google Scholar 

  19. Ding X-C, Wang J, Rui Q, Wang D-Y (2018) Long-term exposure to thiolated graphene oxide in the range of μg/L induces toxicity in nematode Caenorhabditis elegans. Sci Total Environ 616–617:29–37

    Article  PubMed  CAS  Google Scholar 

  20. Kim SW, Nam S, An Y (2012) Interaction of silver nanoparticles with biological surfaces of Caenorhabditis elegans. Ecotoxicol Environ Saf 77:64–70

    Article  CAS  PubMed  Google Scholar 

  21. Zhao Y-L, Liu Q, Shakoor S, Gong JR, Wang D-Y (2015) Transgenerational safe property of nitrogen-doped graphene quantum dots and the underlying cellular mechanism in Caenorhabditis elegans. Toxicol Res 4:270–280

    Article  CAS  Google Scholar 

  22. Yu X-M, Guan X-M, Wu Q-L, Zhao Y-L, Wang D-Y (2015) Vitamin E ameliorates the neurodegeneration related phenotypes caused by neurotoxicity of Al2O3-nanoparticles in C. elegans. Toxicol Res 4:1269–1281

    Article  CAS  Google Scholar 

  23. Jung S, Qu X, Aleman-Meza B, Wang T, Riepe C, Liu Z, Li Q, Zhong W (2015) Multi-endpoint, high-throughput study of nanomaterial toxicity in Caenorhabditis elegans. Environ Sci Technol 49:2477–2485

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Wu Q-L, Zhao Y-L, Li Y-P, Wang D-Y (2014) Molecular signals regulating translocation and toxicity of graphene oxide in nematode Caenorhabditis elegans. Nanoscale 6:11204–11212

    Article  PubMed  CAS  Google Scholar 

  25. Wu Q-L, Zhao Y-L, Li Y-P, Wang D-Y (2014) Susceptible genes regulate the adverse effects of TiO2-NPs at predicted environmental relevant concentrations on nematode Caenorhabditis elegans. Nanomed: Nanotechnol Biol Med 10:1263–1271

    Article  CAS  Google Scholar 

  26. Zhang H, He X, Zhang Z, Zhang P, Li Y, Ma Y, Kuang Y, Zhao Y, Chai Z (2011) Nano-CeO2 exhibits adverse effects at environmental relevant concentrations. Environ Sci Technol 45(8):3725–3730

    Article  PubMed  CAS  Google Scholar 

  27. Li Y-X, Wang W, Wu Q-L, Li Y-P, Tang M, Ye B-P, Wang D-Y (2012) Molecular control of TiO2-NPs toxicity formation at predicted environmental relevant concentrations by Mn-SODs proteins. PLoS One 7(9):e44688

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Nouara A, Wu Q-L, Li Y-X, Tang M, Wang H-F, Zhao Y-L, Wang D-Y (2013) Carboxylic acid functionalization prevents the translocation of multi-walled carbon nanotubes at predicted environmental relevant concentrations into targeted organs of nematode Caenorhabditis elegans. Nanoscale 5:6088–6096

    Article  CAS  PubMed  Google Scholar 

  29. Wu Q-L, Li Y-X, Li Y-P, Zhao Y-L, Ge L, Wang H-F, Wang D-Y (2013) Crucial role of biological barrier at the primary targeted organs in controlling translocation and toxicity of multi-walled carbon nanotubes in nematode Caenorhabditis elegans. Nanoscale 5:11166–11178

    Article  PubMed  CAS  Google Scholar 

  30. Wu Q-L, Wang W, Li Y-X, Li Y-P, Ye B-P, Tang M, Wang D-Y (2012) Small sizes of TiO2-NPs exhibit adverse effects at predicted environmental relevant concentrations on nematodes in a modified chronic toxicity assay system. J Hazard Mater 243:161–168

    Article  PubMed  CAS  Google Scholar 

  31. Wu S, Lu J-H, Rui Q, Yu S-H, Cai T, Wang D-Y (2011) Aluminum nanoparticle exposure in L1 larvae results in more severe lethality toxicity than in L4 larvae or young adults by strengthening the formation of stress response and intestinal lipofuscin accumulation in nematodes. Environ Toxicol Pharmacol 31:179–188

    Article  CAS  PubMed  Google Scholar 

  32. Collin B, Oostveen E, Tsyusko OV, Unrine JM (2014) Influence of natural organic matter and surface charge on the toxicity and bioaccumulation of functionalized ceria nanoparticles in Caenorhabditis elegans. Environ Sci Technol 48:1280–1289

    Article  PubMed  CAS  Google Scholar 

  33. Gorka DE, Osterberg JS, Gwin CA, Colman BP, Meyer JN, Bernhardt ES, Gunsch CK, DiGulio RT, Liu J (2015) Reducing environmental toxicity of silver nanoparticles through shape control. Environ Sci Technol 49:10093–10098

    Article  PubMed  CAS  Google Scholar 

  34. Ellegaard-Jensen L, Jensen KA, Johansen A (2012) Nano-silver induces dose-response effects on the nematode Caenorhabditis elegans. Ecotoxicol Environ Saf 80:216–223

    Article  CAS  PubMed  Google Scholar 

  35. Meyer JN, Lord CA, Yang XY, Turner EA, Badireddy AR, Marinakos SM, Chilkoti A, Wiesner MR, Auffan M (2010) Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans. Aquat Toxicol 100(2):140–150

    Article  CAS  PubMed  Google Scholar 

  36. Zhang W, Wang C, Li Z, Lu Z, Li Y, Yin J, Zhou Y, Gao X, Fang Y, Nie G, Zhao Y (2012) Unraveling stress-induced toxicity properties of graphene oxide and the underlying mechanism. Adv Mater 24:5391–5397

    Article  PubMed  CAS  Google Scholar 

  37. Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41:8484–8490

    Article  CAS  PubMed  Google Scholar 

  38. Roh J, Sim SJ, Yi J, Park K, Chung KH, Ryu D, Choi J (2009) Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics. Environ Sci Technol 43:3933–3940

    Article  CAS  PubMed  Google Scholar 

  39. Yang X, Gondikas AP, Marinakos SM, Auffan M, Liu J, Hsu-Kim H, Meyer JN (2012) Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environ Sci Technol 46:1119–1127

    Article  CAS  PubMed  Google Scholar 

  40. Hsu PL, O’Callaghan M, Al-Salim N, Hurst MRH (2012) Quantum dot nanoparticles affect the reproductive system of Caenorhabditis elegans. Environ Toxicol Chem 31:2366–2374

    Article  PubMed  CAS  Google Scholar 

  41. Lim D, Roh J, Eom H, Choi J, Hyun J, Choi J (2012) Oxidative stress-related PMK-1 p38 MAPK activation as a mechanism for toxicity of silver nanoparticles to reproduction in the nematode Caenorhabditis elegans. Environ Toxicol Chem 31:585–592

    Article  PubMed  CAS  Google Scholar 

  42. Wu Q-L, Yin L, Li X, Tang M, Zhang T, Wang D-Y (2013) Contributions of altered permeability of intestinal barrier and defecation behavior to toxicity formation from graphene oxide in nematode Caenorhabditis elegans. Nanoscale 5(20):9934–9943

    Article  PubMed  CAS  Google Scholar 

  43. Zhao L, Qu M, Wong G, Wang D-Y (2017) Transgenerational toxicity of nanopolystyrene particles in the range of μg/L in nematode Caenorhabditis elegans. Environ Sci Nano 4:2356–2366

    Article  CAS  Google Scholar 

  44. Pluskota A, Horzowski E, Bossinger O, von Mikecz A (2009) In Caenorhabditis elegans nanoparticle-bio-interactions become transparent: silica-nanoparticles induce reproductive senescence. PLoS One 4(8):e6622

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Scharf A, Piechulek A, von Mikecz A (2013) Effect of nanoparticles on the biochemical and behavioral aging phenotype of the nematode Caenorhabditis elegans. ACS Nano 7(12):10695–10703

    Article  PubMed  CAS  Google Scholar 

  46. Wang Q, Zhou Y, Song B, Zhong Y, Wu S, Cui R, Cong H, Su Y, Zhang H, He Y (2016) Linking subcellular disturbance to physiological behavior and toxicity induced by quantum dots in Caenorhabditis elegans. Small 23:3143–3154

    Article  CAS  Google Scholar 

  47. Ma H, Kabengi NJ, Bertsch PM, Unrine JM, Glenn TC, Williams PL (2011) Comparative phototoxicity of nanoparticulate and bulk ZnO to a free-living nematode Caenorhabditis elegans: the importance of illumination mode and primary particle size. Environ Pollut 159:1473–1480

    Article  PubMed  CAS  Google Scholar 

  48. Tyne W, Little S, Spurgeon DJ, Svendsen C (2015) Hormesis depends upon the life-stage and duration of exposure: examples for a pesticide and a nanomaterial. Ecotoxicol Environ Saf 120:117–123

    Article  PubMed  CAS  Google Scholar 

  49. Zhi L-T, Qu M, Ren M-X, Zhao L, Li Y-H, Wang D-Y (2017) Graphene oxide induces canonical Wnt/β-catenin signaling-dependent toxicity in Caenorhabditis elegans. Carbon 113:122–131

    Article  CAS  Google Scholar 

  50. Qu M, Li Y-H, Wu Q-L, Xia Y-K, Wang D-Y (2017) Neuronal ERK signaling in response to graphene oxide in nematode Caenorhabditis elegans. Nanotoxicology 11(4):520–533

    Article  CAS  PubMed  Google Scholar 

  51. Ren M-X, Zhao L, Lv X, Wang D-Y (2017) Antimicrobial proteins in the response to graphene oxide in Caenorhabditis elegans. Nanotoxicology 11(4):578–590

    Article  CAS  PubMed  Google Scholar 

  52. Zhao L, Wan H-X, Liu Q-Z, Wang D-Y (2017) Multi-walled carbon nanotubes-induced alterations in microRNA let-7 and its targets activate a protection mechanism by conferring a developmental timing control. Part Fibre Toxicol 14:27

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zhi L-T, Yu Y-L, Jiang Z-X, Wang D-Y (2017) mir-355 functions as an important link between p38 MAPK signaling and insulin signaling in the regulation of innate immunity. Sci Rep 7:14560

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Zhuang Z-H, Li M, Liu H, Luo L-B, Gu W-D, Wu Q-L, Wang D-Y (2016) Function of RSKS-1-AAK-2-DAF-16 signaling cascade in enhancing toxicity of multi-walled carbon nanotubes can be suppressed by mir-259 activation in Caenorhabditis elegans. Sci Rep 6:32409

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Zhao Y-L, Wu Q-L, Li Y-P, Nouara A, Jia R-H, Wang D-Y (2014) In vivo translocation and toxicity of multi-walled carbon nanotubes are regulated by microRNAs. Nanoscale 6(8):4275–4284

    Article  PubMed  CAS  Google Scholar 

  56. Wu Q-L, Zhou X-F, Han X-X, Zhuo Y-Z, Zhu S-T, Zhao Y-L, Wang D-Y (2016) Genome-wide identification and functional analysis of long noncoding RNAs involved in the response to graphene oxide. Biomaterials 102:277–291

    Article  PubMed  CAS  Google Scholar 

  57. Lim SF, Riehn R, Ryu WS, Khanarian N, Tung C, Tank D, Austin RH (2006) In vivo and scanning electron microscopy imaging of upconverting nanophosphors in Caenorhabditis elegans. Nano Lett 6(2):169–174

    Article  PubMed  CAS  Google Scholar 

  58. Chen J, Guo C, Wang M, Huang L, Wang L, Mi C, Li J, Fang X, Mao C, Xu S (2011) Controllable synthesis of NaYF4 : Yb,Er upconversion nanophosphors and their application to in vivo imaging of Caenorhabditis elegans. J Mater Chem 21(8):2632

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Zhou J, Yang Z, Dong W, Tang R, Sun L, Chun-Hua Yan C (2011) Bioimaging and toxicity assessments of near-infrared upconversion luminescent NaYF4:Yb,Tm nanocrystals. Biomaterials 32:9059–9067

    Article  PubMed  CAS  Google Scholar 

  60. Qu Y, Li W, Zhou Y, Liu X, Zhang L, Wang L, Li Y, Iida A, Tang Z, Zhao Y, Chai Z, Chen C (2011) Full assessment of fate and physiological behavior of quantum dots utilizing Caenorhabditis elegans as a model organism. Nano Lett 11:3174–3183

    Article  PubMed  CAS  Google Scholar 

  61. Zhang L, Xia J, Zhao Q, Liu L, Zhang Z (2010) Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 6:537–544

    Article  CAS  PubMed  Google Scholar 

  62. Cranfield CG, Dawe A, Karloukovski V, Dunin-Borkowski RE, de Pomerai D, Dobson J (2004) Biogenic magnetite in the nematode Caenorhabditis elegans. Proc R Soc Lond B 271(Suppl):S436–S439

    Article  Google Scholar 

  63. Gao Y, Liu N, Chen C, Luo Y, Li Y, Zhang Z, Zhao Y, Zhao B, Iida A, Chai Z (2008) Mapping technique for biodistribution of elements in a model organism, Caenorhabditis elegans, after exposure to copper nanoparticles with microbeam synchrotron radiation X-ray fluorescence. J Anal At Spectrom 23:1121–1124

    Article  CAS  Google Scholar 

  64. Zanni E, De Bellis G, Bracciale MP, Broggi A, Santarelli ML, Sarto MS, Palleschi C, Uccelletti D (2012) Graphite nanoplatelets and Caenorhabditis elegans: insights from an in vivo model. Nano Lett 12:2740–2744

    Article  CAS  PubMed  Google Scholar 

  65. Zhao Y-L, Wang X, Wu Q-L, Li Y-P, Wang D-Y (2015) Translocation and neurotoxicity of CdTe quantum dots in RMEs motor neurons in nematode Caenorhabditis elegans. J Hazard Mater 283:480–489

    Article  CAS  PubMed  Google Scholar 

  66. Zhao Y-L, Wang X, Wu Q-L, Li Y-P, Tang M, Wang D-Y (2015) Quantum dots exposure alters both development and function of D-type GABAergic motor neurons in nematode Caenorhabditis elegans. Toxicol Res 4:399–408

    Article  CAS  Google Scholar 

  67. Zhang W, Sun B, Zhang L, Zhao B, Nie G, Zhao Y (2011) Biosafety assessment of Gd@C82(OH)22 nanoparticles on Caenorhabditis elegans. Nanoscale 3:2636–2641

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, D. (2018). Values of C. elegans in Toxicological Study. In: Nanotoxicology in Caenorhabditis elegans. Springer, Singapore. https://doi.org/10.1007/978-981-13-0233-6_1

Download citation

Publish with us

Policies and ethics