A Unique Ternary Semiconductor-(Semiconductor/Metal) Nano-Architecture for Efficient Photocatalytic Hydrogen Evolution

Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

A novel strategy was developed for fabricating ternary semiconductor-semiconductor-metal heteronanorods. Basing on prepared ZnS nanorods, we constructed unique 1D ternary heteronanorods -[S1-(S2/M)]-S1-[S1-(S2/M)]-S1-, with segmented node sheaths S2 decorated by M (S1: ZnS; S2: CdS; M: Au, Pd, Pt) through the chemical transformation strategy. The charge-separation efficacy in this unique ternary nanosystem has been demonstrated by performance improvement of optical-to-electrical conversion.

References

  1. 1.
    Peng, X., Manna, L., Yang, W., Wickham, J., Scher, E., Kadavanich, A., Alivisatos, A.P.: Shape control of CdSe nanocrystals. Nature 404, 59–61 (2000)CrossRefGoogle Scholar
  2. 2.
    Xia, Y., Xiong, Y., Lim, B., Skrabalak, S.E.: Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew. Chem. Int. Ed. 48, 60–103 (2009)CrossRefGoogle Scholar
  3. 3.
    Du, Y., Yin, Z., Zhu, J., Huang, X., Wu, X.J., Zeng, Z., Yan, Q., Zhang, H.: A general method for the large-scale synthesis of uniform ultrathin metal sulphide nanocrystals. Nat Commun 3, 1177 (2012)CrossRefGoogle Scholar
  4. 4.
    Harris, D.K., Bawendi, M.G.: Improved precursor chemistry for the synthesis of III–V quantum dots. J. Am. Chem. Soc. 134, 20211–20213 (2012)CrossRefGoogle Scholar
  5. 5.
    Oh, M.H., Yu, T., Yu, S.-H., Lim, B., Ko, K.-T., Willinger, M.-G., Seo, D.-H., Kim, B.H., Cho, M.G., Park, J.-H., Kang, K., Sung, Y.-E., Pinna, N., Hyeon, T.: Galvanic replacement reactions in metal oxide nanocrystals. Science 340, 964–968 (2013)CrossRefGoogle Scholar
  6. 6.
    Wang, D., Xin, H.L., Hovden, R., Wang, H., Yu, Y., Muller, D.A., DiSalvo, F.J., Abruña, H.D.: Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 12, 81–87 (2013)CrossRefGoogle Scholar
  7. 7.
    Pang, X., Wan, C., Wang, M., Lin, Z.: Strictly biphasic soft and hard janus structures: synthesis, properties, and applications. Angew. Chem. Int. Ed. 53, 5524–5538 (2014)CrossRefGoogle Scholar
  8. 8.
    Wang, L., Ge, J., Wang, A., Deng, M., Wang, X., Bai, S., Li, R., Jiang, J., Zhang, Q., Luo, Y., Xiong, Y.: Designing p-Type semiconductor-metal hybrid structures for improved photocatalysis. Angew. Chem. Int. Ed. 53, 5107–5111 (2014)Google Scholar
  9. 9.
    Lhuillier, E., Pedetti, S., Ithurria, S., Nadal, B., Heuclin, H., Dubertret, B.: Two-dimensional colloidal metal chalcogenides semiconductors: synthesis, spectroscopy, and applications. Acc. Chem. Res. 48, 22–30 (2015)CrossRefGoogle Scholar
  10. 10.
    Tan, C., Zhang, H.: Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev. 44, 2713–2731 (2015)CrossRefGoogle Scholar
  11. 11.
    Costi, R., Saunders, A.E., Banin, U.: Colloidal hybrid nanostructures: a new type of functional materials. Angew. Chem. Int. Ed. 49, 4878–4897 (2010)CrossRefGoogle Scholar
  12. 12.
    Moon, G.D., Ko, S., Min, Y., Zeng, J., Xia, Y., Jeong, U.: Chemical transformations of nanostructured materials. Nano Today 6, 186–203 (2011)CrossRefGoogle Scholar
  13. 13.
    Liu, X.W., Wang, D.S., Li, Y.D.: Synthesis and catalytic properties of bimetallic nanomaterials with various architectures. Nano Today 7, 448–466 (2012)CrossRefGoogle Scholar
  14. 14.
    Yin, Y., Talapin, D.: The chemistry of functional nanomaterials. Chem. Soc. Rev. 42, 2484–2487 (2013)CrossRefGoogle Scholar
  15. 15.
    Simon, T., Bouchonville, N., Berr, M.J., Vaneski, A., Adrovic, A., Volbers, D., Wyrwich, R., Doblinger, M., Susha, A.S., Rogach, A.L., Jackel, F., Stolarczyk, J.K., Feldmann, J.: Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods. Nat. Mater. 13, 1013–1018 (2014)CrossRefGoogle Scholar
  16. 16.
    Xu, B., He, P., Liu, H., Wang, P., Zhou, G., Wang, X.: A 1D/2D helical CdS/ZnIn2S4 nano-heterostructure. Angew. Chem. Int. Ed. 53, 2339–2343 (2014)CrossRefGoogle Scholar
  17. 17.
    Zhang, Z.C., Xu, B., Wang, X.: Engineering nanointerfaces for nanocatalysis. Chem. Soc. Rev. 43, 7870–7886 (2014)CrossRefGoogle Scholar
  18. 18.
    Gao, M.R., Liang, J.X., Zheng, Y.R., Xu, Y.F., Jiang, J., Gao, Q., Li, J., Yu, S.H.: An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nat. Commun. 6, 5982–5989 (2015)CrossRefGoogle Scholar
  19. 19.
    Mayer, M.T., Lin, Y., Yuan, G., Wang, D.: Forming heterojunctions at the nanoscale for improved photoelectrochemical water splitting by semiconductor materials: case studies on hematite. Acc. Chem. Res. 46, 1558–1566 (2013)CrossRefGoogle Scholar
  20. 20.
    Qu, Y., Duan, X.: Progress, challenge and perspective of heterogeneous photocatalysts. Chem. Soc. Rev. 42, 2568–2580 (2013)CrossRefGoogle Scholar
  21. 21.
    Carbone, L., Cozzoli, P.D.: Colloidal heterostructured nanocrystals: synthesis and growth mechanisms. Nano Today 5, 449–493 (2010)CrossRefGoogle Scholar
  22. 22.
    Wang, X., Zhuang, J., Peng, Q., Li, Y.: A general strategy for nanocrystal synthesis. Nature 437, 121–124 (2005)CrossRefGoogle Scholar
  23. 23.
    Yin, Y., Alivisatos, A.P.: Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 437, 664–670 (2005)CrossRefGoogle Scholar
  24. 24.
    Zhuang, Z., Peng, Q., Li, Y.: Controlled synthesis of semiconductor nanostructures in the liquid phase. Chem. Soc. Rev. 40, 5492–5513 (2011)CrossRefGoogle Scholar
  25. 25.
    Son, D.H., Hughes, S.M., Yin, Y., Paul Alivisatos, A.: Cation exchange reactions in ionic nanocrystals. Science 306, 1009–1012 (2004)CrossRefGoogle Scholar
  26. 26.
    Rivest, J.B., Jain, P.K.: Cation exchange on the nanoscale: an emerging technique for new material synthesis, device fabrication, and chemical sensing. Chem. Soc. Rev. 42, 89–96 (2013)CrossRefGoogle Scholar
  27. 27.
    Jain, P.K., Amirav, L., Aloni, S., Alivisatos, A.P.: Nanoheterostructure cation exchange: anionic framework conservation. J. Am. Chem. Soc. 132, 9997–9999 (2010)CrossRefGoogle Scholar
  28. 28.
    Robinson, R.D., Sadtler, B., Demchenko, D.O., Erdonmez, C.K., Wang, L.-W., Alivisatos, A.P.: Spontaneous superlattice formation in nanorods through partial cation exchange. Science 317, 355–358 (2007)CrossRefGoogle Scholar
  29. 29.
    Sadtler, B., Demchenko, D.O., Zheng, H., Hughes, S.M., Merkle, M.G., Dahmen, U., Wang, L.-W., Alivisatos, A.P.: Selective facet reactivity during cation exchange in cadmium sulfide nanorods. J. Am. Chem. Soc. 131, 5285–5293 (2009)CrossRefGoogle Scholar
  30. 30.
    Justo, Y., Goris, B., Kamal, J.S., Geiregat, P., Bals, S., Hens, Z.: Multiple dot-in-rod PbS/CdS heterostructures with high photoluminescence quantum yield in the near-infrared. J. Am. Chem. Soc. 134, 5484–5487 (2012)CrossRefGoogle Scholar
  31. 31.
    Zhuang, T.T., Liu, Y., Sun, M., Jiang, S.L., Zhang, M.W., Wang, X.C., Zhang, Q., Jiang, J., Yu, S.H.: A unique ternary semiconductor-(semiconductor/metal) nano-architecture for efficient photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 54, 11495–11500 (2015)CrossRefGoogle Scholar
  32. 32.
    Martell, A.E., Hancock, R.D.: Metal complexes in aqueous solutions. Plenum Press, New York (1996)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations