Skip to main content

A Unique Ternary Semiconductor-(Semiconductor/Metal) Nano-Architecture for Efficient Photocatalytic Hydrogen Evolution

  • Chapter
  • First Online:
Design, Synthesis and Applications of One-Dimensional Chalcogenide Hetero-Nanostructures

Part of the book series: Springer Theses ((Springer Theses))

  • 765 Accesses

Abstract

A novel strategy was developed for fabricating ternary semiconductor-semiconductor-metal heteronanorods. Basing on prepared ZnS nanorods, we constructed unique 1D ternary heteronanorods -[S1-(S2/M)]-S1-[S1-(S2/M)]-S1-, with segmented node sheaths S2 decorated by M (S1: ZnS; S2: CdS; M: Au, Pd, Pt) through the chemical transformation strategy. The charge-separation efficacy in this unique ternary nanosystem has been demonstrated by performance improvement of optical-to-electrical conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Peng, X., Manna, L., Yang, W., Wickham, J., Scher, E., Kadavanich, A., Alivisatos, A.P.: Shape control of CdSe nanocrystals. Nature 404, 59–61 (2000)

    Article  Google Scholar 

  2. Xia, Y., Xiong, Y., Lim, B., Skrabalak, S.E.: Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew. Chem. Int. Ed. 48, 60–103 (2009)

    Article  Google Scholar 

  3. Du, Y., Yin, Z., Zhu, J., Huang, X., Wu, X.J., Zeng, Z., Yan, Q., Zhang, H.: A general method for the large-scale synthesis of uniform ultrathin metal sulphide nanocrystals. Nat Commun 3, 1177 (2012)

    Article  Google Scholar 

  4. Harris, D.K., Bawendi, M.G.: Improved precursor chemistry for the synthesis of III–V quantum dots. J. Am. Chem. Soc. 134, 20211–20213 (2012)

    Article  Google Scholar 

  5. Oh, M.H., Yu, T., Yu, S.-H., Lim, B., Ko, K.-T., Willinger, M.-G., Seo, D.-H., Kim, B.H., Cho, M.G., Park, J.-H., Kang, K., Sung, Y.-E., Pinna, N., Hyeon, T.: Galvanic replacement reactions in metal oxide nanocrystals. Science 340, 964–968 (2013)

    Article  Google Scholar 

  6. Wang, D., Xin, H.L., Hovden, R., Wang, H., Yu, Y., Muller, D.A., DiSalvo, F.J., Abruña, H.D.: Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 12, 81–87 (2013)

    Article  Google Scholar 

  7. Pang, X., Wan, C., Wang, M., Lin, Z.: Strictly biphasic soft and hard janus structures: synthesis, properties, and applications. Angew. Chem. Int. Ed. 53, 5524–5538 (2014)

    Article  Google Scholar 

  8. Wang, L., Ge, J., Wang, A., Deng, M., Wang, X., Bai, S., Li, R., Jiang, J., Zhang, Q., Luo, Y., Xiong, Y.: Designing p-Type semiconductor-metal hybrid structures for improved photocatalysis. Angew. Chem. Int. Ed. 53, 5107–5111 (2014)

    Google Scholar 

  9. Lhuillier, E., Pedetti, S., Ithurria, S., Nadal, B., Heuclin, H., Dubertret, B.: Two-dimensional colloidal metal chalcogenides semiconductors: synthesis, spectroscopy, and applications. Acc. Chem. Res. 48, 22–30 (2015)

    Article  Google Scholar 

  10. Tan, C., Zhang, H.: Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev. 44, 2713–2731 (2015)

    Article  Google Scholar 

  11. Costi, R., Saunders, A.E., Banin, U.: Colloidal hybrid nanostructures: a new type of functional materials. Angew. Chem. Int. Ed. 49, 4878–4897 (2010)

    Article  Google Scholar 

  12. Moon, G.D., Ko, S., Min, Y., Zeng, J., Xia, Y., Jeong, U.: Chemical transformations of nanostructured materials. Nano Today 6, 186–203 (2011)

    Article  Google Scholar 

  13. Liu, X.W., Wang, D.S., Li, Y.D.: Synthesis and catalytic properties of bimetallic nanomaterials with various architectures. Nano Today 7, 448–466 (2012)

    Article  Google Scholar 

  14. Yin, Y., Talapin, D.: The chemistry of functional nanomaterials. Chem. Soc. Rev. 42, 2484–2487 (2013)

    Article  Google Scholar 

  15. Simon, T., Bouchonville, N., Berr, M.J., Vaneski, A., Adrovic, A., Volbers, D., Wyrwich, R., Doblinger, M., Susha, A.S., Rogach, A.L., Jackel, F., Stolarczyk, J.K., Feldmann, J.: Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods. Nat. Mater. 13, 1013–1018 (2014)

    Article  Google Scholar 

  16. Xu, B., He, P., Liu, H., Wang, P., Zhou, G., Wang, X.: A 1D/2D helical CdS/ZnIn2S4 nano-heterostructure. Angew. Chem. Int. Ed. 53, 2339–2343 (2014)

    Article  Google Scholar 

  17. Zhang, Z.C., Xu, B., Wang, X.: Engineering nanointerfaces for nanocatalysis. Chem. Soc. Rev. 43, 7870–7886 (2014)

    Article  Google Scholar 

  18. Gao, M.R., Liang, J.X., Zheng, Y.R., Xu, Y.F., Jiang, J., Gao, Q., Li, J., Yu, S.H.: An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nat. Commun. 6, 5982–5989 (2015)

    Article  Google Scholar 

  19. Mayer, M.T., Lin, Y., Yuan, G., Wang, D.: Forming heterojunctions at the nanoscale for improved photoelectrochemical water splitting by semiconductor materials: case studies on hematite. Acc. Chem. Res. 46, 1558–1566 (2013)

    Article  Google Scholar 

  20. Qu, Y., Duan, X.: Progress, challenge and perspective of heterogeneous photocatalysts. Chem. Soc. Rev. 42, 2568–2580 (2013)

    Article  Google Scholar 

  21. Carbone, L., Cozzoli, P.D.: Colloidal heterostructured nanocrystals: synthesis and growth mechanisms. Nano Today 5, 449–493 (2010)

    Article  Google Scholar 

  22. Wang, X., Zhuang, J., Peng, Q., Li, Y.: A general strategy for nanocrystal synthesis. Nature 437, 121–124 (2005)

    Article  Google Scholar 

  23. Yin, Y., Alivisatos, A.P.: Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 437, 664–670 (2005)

    Article  Google Scholar 

  24. Zhuang, Z., Peng, Q., Li, Y.: Controlled synthesis of semiconductor nanostructures in the liquid phase. Chem. Soc. Rev. 40, 5492–5513 (2011)

    Article  Google Scholar 

  25. Son, D.H., Hughes, S.M., Yin, Y., Paul Alivisatos, A.: Cation exchange reactions in ionic nanocrystals. Science 306, 1009–1012 (2004)

    Article  Google Scholar 

  26. Rivest, J.B., Jain, P.K.: Cation exchange on the nanoscale: an emerging technique for new material synthesis, device fabrication, and chemical sensing. Chem. Soc. Rev. 42, 89–96 (2013)

    Article  Google Scholar 

  27. Jain, P.K., Amirav, L., Aloni, S., Alivisatos, A.P.: Nanoheterostructure cation exchange: anionic framework conservation. J. Am. Chem. Soc. 132, 9997–9999 (2010)

    Article  Google Scholar 

  28. Robinson, R.D., Sadtler, B., Demchenko, D.O., Erdonmez, C.K., Wang, L.-W., Alivisatos, A.P.: Spontaneous superlattice formation in nanorods through partial cation exchange. Science 317, 355–358 (2007)

    Article  Google Scholar 

  29. Sadtler, B., Demchenko, D.O., Zheng, H., Hughes, S.M., Merkle, M.G., Dahmen, U., Wang, L.-W., Alivisatos, A.P.: Selective facet reactivity during cation exchange in cadmium sulfide nanorods. J. Am. Chem. Soc. 131, 5285–5293 (2009)

    Article  Google Scholar 

  30. Justo, Y., Goris, B., Kamal, J.S., Geiregat, P., Bals, S., Hens, Z.: Multiple dot-in-rod PbS/CdS heterostructures with high photoluminescence quantum yield in the near-infrared. J. Am. Chem. Soc. 134, 5484–5487 (2012)

    Article  Google Scholar 

  31. Zhuang, T.T., Liu, Y., Sun, M., Jiang, S.L., Zhang, M.W., Wang, X.C., Zhang, Q., Jiang, J., Yu, S.H.: A unique ternary semiconductor-(semiconductor/metal) nano-architecture for efficient photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 54, 11495–11500 (2015)

    Article  Google Scholar 

  32. Martell, A.E., Hancock, R.D.: Metal complexes in aqueous solutions. Plenum Press, New York (1996)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao-Tao Zhuang .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhuang, TT. (2018). A Unique Ternary Semiconductor-(Semiconductor/Metal) Nano-Architecture for Efficient Photocatalytic Hydrogen Evolution. In: Design, Synthesis and Applications of One-Dimensional Chalcogenide Hetero-Nanostructures. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-0188-9_3

Download citation

Publish with us

Policies and ethics