Mechanism of SO2 Influence on Mn/TiO2 for Low Temperature SCR Reaction

  • Lu Wei
  • Suping Cui
  • Hongxia Guo
  • Xiaoyu Ma
  • Boxue Sun
Conference paper
Part of the Springer Proceedings in Energy book series (SPE)

Abstract

Mn-based catalysts extremely restricted with the deactivation by SO2. In this paper, catalysts of Mn/TiO2 prepared by co-precipitation method for low temperature selective catalytic reduction (SCR) of NO with NH3 under the influence of SO2. For Mn/TiO2, NO conversion decreased rapidly from 90% to about 55% at 200 ℃ in the presence of SO2. We reveal the mechanism of SO2 effect on the adsorption of NH3 and NO based on DRIFT and TPD. The result show that SO2 can reduce the adsorption amount of NH3 on the Lewis acid sites and react with NH4+ to form NH4HSO3 on the Brønsted acid sites. In the meantime, SO2 can inhibit the adsorption of NO took part in the SCR reaction on the surface of catalyst due to the mechanical of competitive adsorption. These poisoning phenomenon of SO2 hinder the proceeding of SCR reaction.

Keywords

Low temperature SCR MnOx/TiO2 SO2 DRIFT TPD 

Notes

Acknowledgements

The project of financially supported by the National Natural Science Foundation of China (Grand No. 51502008).

References

  1. 1.
    Z.G. Huang, Z.P. Zhu, Z.Y. Liu, Q.Y. Liu, J. Catal. 214, 213–219 (2003)CrossRefGoogle Scholar
  2. 2.
    L.Z. Zhang, S.P. Cui, H.X. Guo, X.Y. Ma, X.G. Luo, J. Mol. Catal. A. Chem. 390, 14–21 (2014)Google Scholar
  3. 3.
    Z.B. Wu, R.B. Jin, Y. Liu, H.Q. Wang, Catal. Commun. 9, 2217–2220 (2008)CrossRefGoogle Scholar
  4. 4.
    W.S. Kijlstra, M.B. Biervliet, E.K. Poels, A. Bliek, Appl. Catal. B 16, 327–337 (1998)CrossRefGoogle Scholar
  5. 5.
    L.J. Zhang, S.P. Cui, H.X. Guo, X.Y. Ma, L. Wei, Comp. Mater. Sci 112, 238–244 (2016)CrossRefGoogle Scholar
  6. 6.
    L.J. Zhang, S.P. Cui, H.X. Guo, X.Y. Ma, X.G. Luo, Appl. Surf. Sci. 355, 1116–1122 (2015)CrossRefGoogle Scholar
  7. 7.
    X. Tang, J. Hao, H. Yi, J. Li, Catal. Today. 126, 406–411 (2007)CrossRefGoogle Scholar
  8. 8.
    F.D. Liu, K. Asakura, H. He, W.P. Shan, X.Y. Shi, C.B. Zhang, Appl. Catal. B. 103, 369–377 (2011)CrossRefGoogle Scholar
  9. 9.
    W. Xu, H. He, Y. Yu, J. Phys. Chem. C. 113, 4426–4432 (2009)CrossRefGoogle Scholar
  10. 10.
    M.A. Larrubia, G. Ramis, G. Busca, Appl. Catal. B. 27, 145–151 (2000)CrossRefGoogle Scholar
  11. 11.
    S.D. Lin, A.C. Gluhoi, B.E. Nieuwenhuys, Catal. Today 90, 3–14 (2004)CrossRefGoogle Scholar
  12. 12.
    S. Sayan, M. Kantcheva, S. Suzer, D. Uner, J. Mol. Struct. 480–481, 241–245 (1990)Google Scholar
  13. 13.
    S.D. Lin, A.C. Gluhoi, B.E. Nieuwenhuys, Catal. Today 90, 3–14 (2004)CrossRefGoogle Scholar
  14. 14.
    J.C.S. Wu, Y.T. Cheng, J. Catal 237, 393–404 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Lu Wei
    • 1
  • Suping Cui
    • 1
  • Hongxia Guo
    • 1
  • Xiaoyu Ma
    • 1
  • Boxue Sun
    • 1
  1. 1.Beijing University of TechnologyBeijingChina

Personalised recommendations