Effect of Interface Layer on Compressive Deformation of SiCp/7075 Composites

  • Xiaohong Wang
  • Hailun Wang
  • Shilong Tang
  • Yuanhua Lin
  • Shu Wang
  • Zhengwei Peng
Conference paper
Part of the Springer Proceedings in Energy book series (SPE)


The oxidation or electroless nickel plating of SiC particles are two modification processes to improve the wettability of SiCp/Al interface. Studying the effects of this interface layer on compressive deformation of SiC particle reinforced aluminum matrix composites is helpful to optimising this compression process. In this paper, Deform-3D software was used to simulate the compression deformation behavior of 6.5% vol SiCp/7075 composites with SiO2 or Ni interface layer. And the effects of interface layer materials on the temperature field, stress field, strain field and damage factor happening in the compression process were also analyzed. Simulation results show that, the maximum temperature, tensile stress, maximum effective strain and the damage factor of the Al matrix with Ni interface material are 0.6206 ℃, 53 MPa, 5.70% and 0.0124 respectively more than the Al matrix with SiO2 interface layer respectively. The simulation results are good agree with the experimental result.


SiCp/7075 composites SiO2 (SiC)/Al Ni (SiC)/Al Finite element analysis 


  1. 1.
    M.K. Surappa, Aluminium matrix composites: challenges and opportunities. Sadhana 28(1–2), 319–334 (2003)Google Scholar
  2. 2.
    R.Q. Wang, J.P. Xie, W.J. Wu et al., Influence of SiCp pretreatment on microstructure and performance of SiCp/Al–Si composite. Powder Metall. Ind. 24(6), 33–36 (2014)Google Scholar
  3. 3.
    W.J. Wu, A.Q. Wang, R.Q. Wang, Domestic research progress of Al–Si matrix composites reinforced by SiC particles. Powder Metall. Ind. 06, 54–57 (2014)Google Scholar
  4. 4.
    J. Narciso, C. García-Cordovilla, E. Louis, Reactivity of thermally oxidized and unoxidized SiC particulates with aluminium–silicon alloys. Mater. Sci. Eng. B 15(2), 148–155 (1992)Google Scholar
  5. 5.
    Trespaillébarrau P, Suéry M, Microstructural and mechanical characterisation of aluminium matrix composites reinforced with Ni and NiP coated SiC particles via liquid processing. Mater. Sci. Technol. 10(6), 497–504 (2013)Google Scholar
  6. 6.
    X.H. Wang, Y. Ye, S. Wang et al., Research progress on wettability of SiC/Al interface layer in aluminum matrix. New Technol. New Process (4), 1–6 (2017)Google Scholar
  7. 7.
    Y. Cui, Effect of a slight interfacial reaction on the young’s modulus of SiCp/6061A1 composite. Acta MateriaeCompositaeSinica 5(1), 74–77 (1998)Google Scholar
  8. 8.
    L.B. Li, M.Z. An, G.H. Wu, Study on adhesion mechanism of SiC_p/Al composites and electroless nickel coating. Chin. J. Inorg. Chem. 21(7), 982–986 (2005)Google Scholar
  9. 9.
    Dr. C.M. William, Dr. C.M. William. Implement Russian aluminum drill pipe and retractable drilling bits into the USA volume I: development of aluminum drill pipe in Russian. Off. Sci. Tech. Inf. Tech. Rep. (1999)Google Scholar
  10. 10.
    Reference to a book: ISBN 978-7-122-01224-1Google Scholar
  11. 11.
    X.K. WU, Aluminium Profiles Extrusion Applied Technical Manual (Middle and Southern University press, Changsha, 2006)Google Scholar
  12. 12.
    F. Xu, Y.L. Li, W.G. Guo et al. Influences of Particle Shape, Volume Fraction and Matrix Materials. Acta Materiae Compositae Sinica 20(6), 36–41 (2003)Google Scholar
  13. 13.
    Z.Y. Li, Research On Fracture In Multi-Way Loading Forming Process Of 7075 Aluminum (Northwestern Polytechnical University, Xi’an, 2010)Google Scholar
  14. 14.
    Information on DEFORM-3D material libraryGoogle Scholar
  15. 15.
    H.J. Mcqueen, S. Yue, N.D. Ryan et al., Hot working characteristics of steels in austenitic state. J. Mater. Process. Technol. 53(1–2), 293–310 (1995)Google Scholar
  16. 16.
    C.M. Sellars, W.J. Mctegart, On the mechanism of hot deformation. Acta Metall. 14(9), 1136–1138 (1966)Google Scholar
  17. 17.
    W.U. Ong-Dan, H. Zhang, S. Chen et al., Trans. Nonferr. Metals Soc. Chin. 25(3), 692–698 (2015)Google Scholar
  18. 18.
    G.Q. Wei, Y.J. Guan, L.H. Zhu, et al., Study on numerical simulation of hot extrusion process of automobile’s hollow front Axle. Modern Manuf. Technol. Equip. (6), 81–83 (2016)Google Scholar
  19. 19.
    A.H. Zou, X.L. Zhou, X.Z. Hua et al., J. Inorg. Mater. 30(12), 1283–1290 (2015)Google Scholar
  20. 20.
    L. Ding, J. Chen, K. Zheng, et al., J. Plast. Eng. (6), 157–161 (2016)Google Scholar
  21. 21.
    M.N. Yuan, Y.Q. Yang, B. Huang, et al., Effect of interfacial properties on thermal residual stress in metal matrix composite. Trans. Mater. Heat Treat. 33(6), 174–178 (2012)Google Scholar
  22. 22.
    S.G. Warrier, D.B. Gundel, B.S. Majumdar et al., Metall. Mater. Trans. A. 27(7), 2035–2043 (1996)Google Scholar
  23. 23.
    İ. Tirtom, M. Güden, H. Yıldız, Comput. Mater. Sci. 42(4), 570–578 (2008)Google Scholar
  24. 24.
    Y.C. Guo, C. Cao, J.P. Li et al., Research on high temperature oxidation behavior of SiC and interface of al based composite. Hot Work. Technol. (8), 131–134 (2016)Google Scholar
  25. 25.
    Y. Ye, Study on the Dispersity and Interface Behavior of Reinforced Phase of Sicp/Al–Cu–Mg Composites (Southwest Petroleum University, 2017)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Xiaohong Wang
    • 1
  • Hailun Wang
    • 1
  • Shilong Tang
    • 1
  • Yuanhua Lin
    • 1
  • Shu Wang
    • 1
  • Zhengwei Peng
    • 1
  1. 1.Department of Materials Science and EngineeringSouthwest Petroleum UniversityChengduChina

Personalised recommendations