Preparation of MMT/MVQ Foam Material

  • Bin Xiang
  • Zhaoping Deng
  • Qiyi Gan
Conference paper
Part of the Springer Proceedings in Energy book series (SPE)


MMT/MVQ composites material was prepared by mechanical blending, and the silicone rubber foam was successfully prepared by supercritical carbon dioxide foaming method. The results show that the content of MMT is 5–10 phr, the effect of reinforce is best, and the cell morphology of silicone rubber foam is optimal.


MMT/MVQ composites material Supercritical carbon dioxide Reinforce 



This work is financially supported by a major frontier project of Sichuan Province, (Grant No. 2017JY0101).


  1. 1.
    N.L. Zhou, Introduction of Silicone Polymer (Science Press, Beijing, 2000)Google Scholar
  2. 2.
    R.W. Hergenrother, X.H. Yu, S.L. Cooper, Blood-contacting properties of polydimethyl siloxane polyurea-urethanes. Biomaterials 15(8), 635–640 (1994)Google Scholar
  3. 3.
    Y.B. Kim, D. Cho, W.H. Park, Fabrication and characterization of TiO2/poly(dimethyl siloxane) composite fibers with thermal and mechanical stability. J. Appl. Polym. Sci. 116(1), 449–454 (2010)Google Scholar
  4. 4.
    R. Hernandez, J. Weksler, A. Padsalgikar, In vitro oxidation of high polydimethylsiloxane content biomedical polyurethanes: correlation with the microstructure. J. Biomed. Mater. Res. 87(2), 546–556 (2008)Google Scholar
  5. 5.
    E.-S. Park, Mechanical properties and antibacterial activity of peroxide-cured silicone rubber foams. J. Appl. Polym. Sci. 110, 1723–1729 (2008)Google Scholar
  6. 6.
    A.H. Landrock, Glossary-Handbook of Plastic Foams. (1995), pp. 456–481Google Scholar
  7. 7.
    P. Liu, D. Liu D, H. Zou, Structure and properties of closed-cell foam prepared from irradiation crosslinked silicone rubber. J. Appl. Polym. Sci. 113(6), 3590–3595 (2009)Google Scholar
  8. 8.
    J.B. Grande, A.S. Fawcett, Anhydrous formation of foamed silicone elastomers using the Piers–Rubinsztajn reaction. J. Mclaughlin. Polym. 53(15), 3135–3142 (2012)Google Scholar
  9. 9.
    J. Ling, W. Zhai, W. Feng, Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding. Appl. Mater. Interfac. 5(7), 2677–2684 (2013)Google Scholar
  10. 10.
    K.A. Arora, A.J. Lesser, T.J. Mccarthy, Preparation and characterization of microcellular polystyrene foams processed in supercritical carbon dioxide. Macromolecules 31(14), 4614–4620 (1999)Google Scholar
  11. 11.
    J.J. Chruściel, E. Leśniak, Preparation of flexible, self-extinguishing silicone foams. J. Appl. Polym. Sci. 119(3), 1696–1703 (2010)Google Scholar
  12. 12.
    L.J.M. Jacobs, M.F. Kemmere, J.T.F. Keurentjes, Sustainable polymer foaming using high pressure carbon dioxide: a review on fundamentals, processes and applications. Green Chem. 10(7), 731–738 (2008)Google Scholar
  13. 13.
    A. Gandhi, N. Asija, K.K. Gaur, S.J.A. Rizvi and V. Tiwari, Ultrasound assisted cyclic solid-state foaming for fabricating ultra-low density porous acrylonitrile–butadiene–styrene foams. Mater. Lett. 94(94), 76–78 (2013)Google Scholar
  14. 14.
    W. Yao, D. Zhu, J. Liu, X. Yu and X. Ma, Silicone rubber as a novel insulating material for manufacturing cylindrical glass carbon fiber electrodes. Mater. Lett. 79(23), 159–162 (2012)Google Scholar
  15. 15.
    H. Cochrane, C.S. Lin, The influence of fumed silica properties on the processing, curing, and reinforcement properties of silicone rubber. Rubber Chem. Technol. 66(1), 48–60 (1993)Google Scholar
  16. 16.
    B. Krause, G.H. Koops, N. Vegt, Ultralow-k dielectrics made by supercritical foaming of thin polymer films. Adv. Mater. 14(15), 1041–1046 (2002)Google Scholar
  17. 17.
    K.A. Seeler, V. Kumar, Tension-tension fatigue of microcellular polycarbonate: initial results. J. Reinf. Plast. Compos. 12(3), 359–376 (1993)Google Scholar
  18. 18.
    I.K. Hong, S. Lee, Microcellular foaming of silicone rubber with supercritical carbon dioxide. Korean J. Chem. Eng. 31(1), 166–171 (2014)Google Scholar
  19. 19.
    L. Song, A. Lu, P. Feng, Z. Lu, Preparation of silicone rubber foam using supercritical carbon dioxide. Mater. Lett. 121(121), 126–128 (2015)Google Scholar
  20. 20.
    X. Liao, H. Xu, S. Li, C. Zhou, G. Li, C.B. Park, The effects of viscoelastic properties on the cellular morphology of silicone rubber foams generated by supercritical carbon dioxide. RSC Adv. 5(129), 106981–106988 (2015)Google Scholar
  21. 21.
    Q. Yang, H. Yu, L. Song Y. Lei, F. Zhang, A. Lu, T. Liu, Solid-state microcellular high temperature vulcanized (HTV) silicone rubber foam with carbon dioxide. J. Appl. Polym. Sci. 134(20) (2017)Google Scholar
  22. 22.
    H. Cohrane, C.S. Lin, The influence of fumed silica properties on the processing, curing and reinforcement properties of silicone rubber. Rubber Chem. Technol. 66(1), 48 (1993)Google Scholar
  23. 23.
    A. Das, F.R. Costa, U. Wagenknecht, Nanocomposites based on chloroprene rubber: effect of chemical nature and organic modification of nanoclay on the vulcanizate properties. Eur. Polym. J. 44(11), 3456–3465 (2008)Google Scholar
  24. 24.
    D. Hu, C. Jie, S. Sun, Solubility and diffusivity of CO2 in isotactic polypropylene/nanomontmorillonite composites in melt and solid states. Ind. Eng. Chem. Res. 53(7), 2673–2683 (2014)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.College of Materials and Chemistry and Chemical EngineeringChengdu University of TechnologyChengduChina
  2. 2.Chengdu High-Tech Zone Technical Innovation Service CenterChengduChina

Personalised recommendations