Preparation of ZrO2–Al2O3 Composite Gel Film by Sol-Gel

  • YanHua Geng
  • WeiDong Chen
  • PengFei Zhang
  • ShuFang Yan
  • Zhao Li
Conference paper
Part of the Springer Proceedings in Energy book series (SPE)


In this paper, ZrO2–Al2O3 composite sol prepared by zirconium oxynitrate and isopropanol aluminum precursor was fabricated by sol-gel method. ZrO2–Al2O3 composite gel film was prepared on the surface of zirconium hydride in turns by dip-coating and heat treatment. The morphology and phase structure of the composite gel film were analyzed by scanning electron microscopy (SEM), confocal laser scanning microscope (CLSM) and X-ray diffraction (XRD). Differential scanning calorimetry and thermogravimetry (DSC-TG) analysis were performed to investigate the behavior of composite sol in the heat treatment. The results show that ZrO2–Al2O3 composite gel film with about 20 μm in thickness is uniform, continuous and compact on the surface of zirconium hydride. There is substantial weight loss in the TG curve before 500 ℃. After that, TG curve is flat. The total weight loss of ZrO2–Al2O3 composite sol is 74.2% in the heat treatment. Composite gel has amorphous structure at 600 ℃, and it is mainly composed of T-ZrO2 between 700 and 800 ℃. The aim of crystal stabilizer alumina is to inhibit phase transformation of zirconia.


Sol-Gel Zirconium hydride Composite gel film Crystal stabilizer 


  1. 1.
    M.M. Yao, F. Li, W. He, A novel method for preparing nano- and microcomposite Al2O3–ZrO2 ceramic coatings. J. Dispersion Sci. Technol. 29, 482–484 (2008)CrossRefGoogle Scholar
  2. 2.
    M.P. Puls, S.Q. Shi, J. Rabier, Experimental studies of mechanical properties of solid zirconium hydrides. J. Nucl. Mater. 336, 73–80 (2005)CrossRefGoogle Scholar
  3. 3.
    S. Yamanaka, K. Yoshioka, M. Uno, M. Katsura, H. Anada, T. Matsuda, S. Kobayashi, Thermal and mechanical properties of zirconium hydride. J. Alloys Compd. 293–295, 23–29 (1999)CrossRefGoogle Scholar
  4. 4.
    M. Uno, K. Yamada, T. Maruyama, H. Muta, S. Yamanaka, Thermophysical properties of zirconium hydride and deuteride. J. Alloys Compd. 366, 101–106 (2004)CrossRefGoogle Scholar
  5. 5.
    J.W. Wang, L.J. Wang, W.D. Chen, J.D. Zhang, Effect of Nb on cracking and hydrogen content of zirconium hydride. Rare Met. 36, 61–63 (2012)Google Scholar
  6. 6.
    H.F. Zhang, Q.F. Yang, Z.D. Wang, X.Z. Liu, Study on hydrogen permeation barrier of zirconium hydride. At. Energy Sci. Technol. 39, 83–87 (2005)Google Scholar
  7. 7.
    M. Wu, Y. Chen, J.Q. Peng, G.Q. Yan, Y.P. Sun, J.D. Zhang, S.L. Zhang, L.J. Wang, Hydrogen permeation resistance and characterization of Si–Al and Si–Zr composite sol oxide coating on surface of zirconium hydride. Rare Met. 36, 55–60 (2017)CrossRefGoogle Scholar
  8. 8.
    L.A. Cai, H.X. Liu, W.J. Zhang, An overview on hydrogen permeation barrier development. Hot Working Technol. 43, 10–13 (2014)Google Scholar
  9. 9.
    Z.G. Wang, W.D. Chen, S.F. Yan, X.J. Fan, Z.G. Xu, Characterization of ZrO2 ceramic coatings on ZrH1.8 prepared in different electrolytes by micro-arc oxidation. Rare Met., 1–8 (2015)Google Scholar
  10. 10.
    T. Chikada, A. Suzuki, T. Kobayashi, H. Maier, T. Terai, T. Muroga, Microstructure change and deuterium permeation behavior of erbium oxide coating. J. Nucl. Mater. 417(1–3), 1241–1244 (2011)CrossRefGoogle Scholar
  11. 11.
    S. Ruppi, Deposition, microstructure and properties of texture-controlled CVD α-Al2O3 coatings. Int. J. Refract Metal Hard Mater. 23(4–6), 306–316 (2005)CrossRefGoogle Scholar
  12. 12.
    S.J. Kim, K.Y. Kim, Electrochemical hydrogen permeation measurement through high-strength steel under uniaxial tensile stress in plastic range. Scripta Mater. 66(12), 1069–1072 (2012)CrossRefGoogle Scholar
  13. 13.
    N.R. Yang, G.Y. Yu, The basic principle and process of sol-gel method. B. Chin. Ceram. Soc., 56–63 (1993)Google Scholar
  14. 14.
    Z.J. Wang, W.W. Ji, H. Du, X.Y. Li, J.H. Gong, J.H. Ma, J. Xu, J. Sol-Gel Sci. 72, 511–517 (2014)CrossRefGoogle Scholar
  15. 15.
    Y.X. Hao, J.S. Li, X.J. Yang, X. Wang, L.D. Lu, Preparation of ZrO2–Al2O3 composite membranes by sol-gel process and their characterization. Mater. Sci. Eng., A 367, 243–247 (2004)CrossRefGoogle Scholar
  16. 16.
    L. Gao, Q. Liu, J.S. Hong, Phase transformation in the Al2O3–ZrO2 system. J. Mater. Sci. 33, 1399–1403 (1998)CrossRefGoogle Scholar
  17. 17.
    J. Feng, M. Dan, F.Y. Jin, M.Y. Chen, L.R. Shen, H.H. Tong, G.K. Zhang, Preparation and properties of alumina coatings as tritium permeation barrier by plasma electrolytic oxidation. Rare Met. Mat. Eng. 45, 315–320 (2016)CrossRefGoogle Scholar
  18. 18.
    A. Perujo, K.S. Forcey, Tritium permeation barriers for fusion technology. Fusion Eng. Des. 28, 252–257 (1995)CrossRefGoogle Scholar
  19. 19.
    M. Tahmasebpour, A.A. Babaluo, M.K.R. Aghjeh, Synthesis of zirconia nanopowders from various zirconium salts via polyacrylamide gel method. J. Eur. Ceram. Soc. 28, 773–778 (2008)CrossRefGoogle Scholar
  20. 20.
    M. Wu, Y. Chen, J.Q. Peng, G.Q. Yan, Y.P. Sun, L.J. Wang, Performance of silica sol coating on ZrH1.8 with different component contents. Rare Met. 40, 1145–1153 (2016)Google Scholar
  21. 21.
    J.L. Hu, Y.G. Luo, J.Q. Luo, Q. Liu, X.Y. Tian, Preparation and characterization of alumina zirconia composite powders by alcohol–water method. B. Chin. Ceram. Soc. 35, 3669–3673 (2016)Google Scholar
  22. 22.
    Y. Hao, J. Li, X. Yang, X. Wang, L. Lu, Preparation of ZrO2–Al2O3 composite membranes by sol-gel process and their characterization. Mater. Sci. Eng., A 367(1–2), 243–247 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • YanHua Geng
    • 1
  • WeiDong Chen
    • 1
  • PengFei Zhang
    • 1
  • ShuFang Yan
    • 1
  • Zhao Li
    • 1
  1. 1.College of Materials Science and EngineeringInner Mongolia University of TechnologyHohhotChina

Personalised recommendations