Effect of Co-Doping on the Structure, Magnetic and Hydrogen Absorption Properties of Fe17Dy2 Compound

  • Yongbin Guo
  • Lei Ma
  • Dao Wang
  • Xin Zhou
  • Lin Li
  • Jinliang Tang
Conference paper
Part of the Springer Proceedings in Energy book series (SPE)


The Fe17Dy2Cox (x = 0.0–0.15) compounds were prepared by arc melting method, and then annealed at 800 °C for 100 h. The effect of Co-doping on the structure, magnetic and hydrogen absorption properties was studied by X-ray diffraction (XRD) and vibrating sample magnetometer (VSM), and Pressure Concentration Temperature (PCT). The results show that the unit cell volume and lattice parameter a, b and c of Fe17Dy2Cox increase firstly and then decrease synchronously with the Co content. And Fe17Dy2Cox compounds still keep the Th2Ni17-type hexagonal crystal structure and ferromagnetism with the increase of Co content. For an applied field changed from 0 to 2T, the saturation magnetization (M S ) is tuned from 62.09 Am2/kg at x = 0.0–84.3 Am2/kg at x = 0.15. The content of hydrogen abstraction for Fe17Dy2Cox (x = 0.0, 0.05, 0.1, 0.15) compounds are 0.14, 0.027, 0.034 and 0.03 wt% respectively, which is a novel property in magnet and magnetic materials.


Fe17Dy2 compound Hydrogen absorption Magnetic properties 



This work is supported by the National Natural Science Foundation of China (51461012), the Guangxi Key Laboratory of Information Materials (161011-Z, 161005-K, 151007-K) and the Guangxi Natural Science Foundation (2016GXNSFAA380030, 2016GXNSFGA380001).


  1. 1.
    K. Kobayashi, S. Suzuki, T. Kuno, K. Urushibata, N. Sakuma, M. Yano, T. Shouji, A. Kato, A. Manabe, The stability of newly developed (R,Zr)(Fe,Co)12−xTix alloys for permanent magnets. J. Alloy. Compd. 694, 914–920 (2017)Google Scholar
  2. 2.
    P. Rajasekhara, K. Deepak Kumar, G. Markandeyulu, Anomalous Hall effect studies on Tb-Fe thin films. J. Magn. Magn. Mater. 412, 201–206 (2016)Google Scholar
  3. 3.
    K. Wada, R. Antos, K. Aoshima, K. Machida, K. Kuga, H. Ono, H. Kikuchi, N. Shimidzu, T. Ishibashi, Aperture-ratio dependence of the efficiency of magneto-optical first-order diffraction in GdFe stripe arrays with alternating perpendicular magnetizatio. Opt. Commun. 371, 67–71 (2016)Google Scholar
  4. 4.
    A.G. Kuchin, W. Iwasieczko, S.P. Platonov, The magnetocaloric effect in R2Fe17 intermetallics with different types of magnetic phase transition. Low Temp. Phys. 41, 985 (2015)Google Scholar
  5. 5.
    Yu.G. Pastushenkov, K.P. Skokov, M.B. Lyakhova, E.S. Antonova, Domain structure of R2Fe17 intermetallic compounds with planar-type anisotropy. Met. Sci. Heat Treat. 58, 594–598 (2017)Google Scholar
  6. 6.
    Y.G. Pastushenkov, K.P. Skokov, E.S. Antonova, T.I. Ivanova, J.S. Bartolomé, Domain structure transformation and magnetic susceptibility of Ho2Fe17 single crystals. J. Alloy. Compd. 689, 894–898 (2016)Google Scholar
  7. 7.
    S. Charfeddine, K. Zehani, L. Bessais, A. Korchef, Structural, magnetic, magneto-caloric and Mossbauer spectral study of Tb2Fe17 compound synthesized by arc melting. J. Solid State Chem. 238, 15–20 (2016)Google Scholar
  8. 8.
    H.S. Li, J.M.D. Coey, in Handbook of Magnetic Materials, ed. by K.H.J. Buschow (North-Holland, Amsterdam, 1991), p. 6Google Scholar
  9. 9.
    D. Sanavi Khoshnoud, N. Tajabor, F. Pourarian, H. Salamati, Influence of Si and Co substitutions on magnetoelastic properties of R2Fe17 (R=Y, Er and Tm) intermetallic compounds. J. Magn. Magn. Mater. 321, 3847–3853 (2009)Google Scholar
  10. 10.
    H.Y. Chen, Y. Zhang, J.Z. Han, H.L. Du, C.S. Wang, Y.C. Yang, Magnetocaloric effect in R2Fe17 (R=Sm, Gd, Tb, Dy, Er). J. Magn. Magn. Mater. 320, 1382–1384 (2008)Google Scholar
  11. 11.
    A.G. Kuchin, N.V. Mushnikov, M.I. Bartashevich, O. Prokhnenko, V.I. Khrabrov, T.P. Lapin, Magnetic properties of the Ce2Fe17−xMnx helical magnets up to high magnetic fields. J. Magn. Magn. Mater. 313, 1–7 (2007)Google Scholar
  12. 12.
    X.Z. Wang, K. Donnelly, J.M.D. Coey, B. Chevalier, J. Etourneau, T. Berlureau, Hydrogen absorption and desorption in Nd2Fe17 and Sm2Fe17. J. Mater. Sci. 23, 329 (1988)Google Scholar
  13. 13.
    B. Rupp, G. Wiesinger, Magnetic and structural properties of a novel ternary hydride: Nd2Fe17Hx (0<x<5). J. Magn. Magn. Mater. 71, 269 (1988)Google Scholar
  14. 14.
    O. Isnard, S. Miraglia, J.L. Soubeyroux, D. Fruchart, A. Stergiou, Neutron diffraction study of the structural and magnetic properties of the R2Fe17Hx(Dx) ternary compounds (R=Ce, Nd and Ho). J. Less-Common Met. 162, 273 (1990)Google Scholar
  15. 15.
    D. Fruchart, S. Miraglia, Hydrogenated hard magnetic alloys from fundamental to applications. J. Appl. Phys. 69, 5578–5583 (1991)Google Scholar
  16. 16.
    X.P. Zhong, R.J. Radwanski, F.R. de Boer, T.H. Jacobs, K.H.J. Buschow, Magnetic and crystallographic characteristics of rare-earth ternary carbides derived from R2 Fe17 compounds. J. Magn. Magn. Mater. 86, 333 (1990)Google Scholar
  17. 17.
    J.M.D. Coey, H. Sun, Improved magnetic properties by treatment of iron rare-earth intermetallic compounds in ammonia. J. Magn. Magn. Mater. 87, L251–L254 (1990)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Yongbin Guo
    • 1
  • Lei Ma
    • 1
    • 2
  • Dao Wang
    • 1
  • Xin Zhou
    • 1
  • Lin Li
    • 1
    • 2
  • Jinliang Tang
    • 1
  1. 1.School of Materials Science and EngineeringGuilin University of Electronic TechnologyGuilinChina
  2. 2.Guangxi Key Laboratory of Information MaterialsGuilin University of Electronic TechnologyGuilinChina

Personalised recommendations