Advertisement

Drug Delivery Systems

  • Yoshihiro ItoEmail author
Chapter

Abstract

In the development of drug delivery systems, the principles of photochemistry have been exploited for the encapsulation of drugs in matrices as well as their photocontrolled release. For the former purpose, non-biodegradable and biodegradable synthetic matrices have been developed, and natural polymers, including proteins and polysaccharides, have been utilized after derivatization. For the latter use, non-photodegradable and photodegradable systems have been also fabricated. Non-photodegradable systems are based on the response to ultraviolet/visible light and photothermal stimulations. Photodegradable polymers are designed by inserting photodegradable groups in the main chain, crosslinker, or side chains. Near infrared-sensitive polymers have also been utilized for this application. This chapter introduces multiple-triggered release systems with a comprehensive review of these issues.

Keywords

Biodegradability Photodegradability Photothermal effect Photodegradable group Controlled release 

References

  1. 1.
    Hoffman, A.S.: Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 64, 18–23 (2012)CrossRefGoogle Scholar
  2. 2.
    Timko, B.P., Whitehead, K., Gao, W., Kohane, D.S., Farokhzad, O., Anderson, D., Langer, R.: Advances in drug delivery. Ann. Rev. Mater. Res. 41, 1–20 (2011)CrossRefGoogle Scholar
  3. 3.
    Qiu, Y., Park, K.: Environment-sensitive hydrogel for drug delivery. Adv. Drug Deliv. Rev. 64, 49–60 (2012)CrossRefGoogle Scholar
  4. 4.
    Tai, H., Howard, D., Takae, S., Wang, W., Vermonden, T., Hennink, W.E., Stayton, P.S., Hoffman, A.S., Endruweit, A., Alexander, C., Howdle, S.M., Shakesheff, K.M.: Photo-cross-linked hydrogels from thermoresponsive PEGMEMA-PPGMA-EGDMA copolymers containing multiple methacrylate groups: mechanical property, swelling, protein release, and cytotoxicity. Biomacromolecules 10, 2895–2903 (2009)CrossRefPubMedGoogle Scholar
  5. 5.
    Zhou, D., Ito, Y.: Visible light-curable polymers for biomedical applications. Sci China Chem. 57, 510–521 (2014)CrossRefGoogle Scholar
  6. 6.
    Bose, S, Bogner, R.H.: Solvent less visible light-curable coating: I. Critical formulation and processing parameters. Int J Pharmaceut. 393, 32–40 (2010a)CrossRefPubMedGoogle Scholar
  7. 7.
    Bose, S, Bogner, R.H.: Solvent less visible light-curable coating: II. Drug release, mechanical strength and photostability. Int J Pharmaceut. 393, 41–47 (2010b)CrossRefPubMedGoogle Scholar
  8. 8.
    Shaker, M.A., Dore, J.J.E., Younes, H.M.: Synthesis, characterization and cytocompatibility of a Poly(diol-tricarballylate) visible light photo-cross-linked biodegradable elastomer. J Biomat Sci-Polym E. 21, 507–528 (2010)CrossRefGoogle Scholar
  9. 9.
    Shaker, M.A., Daneshtalab, N., Dore, J.J.E., Younes, H.M.: Biocompatibility and biodegradability of implantable drug delivery matrices based on novel poly(decane-co-tricarballylate) photocured elastomers. J Bioact Compat Pol. 27, 78–94 (2012)CrossRefGoogle Scholar
  10. 10.
    Liu, J.Z., Zhang, L., Lam, J.W.Y., Jim, C.K.W., Yue, Y.A., Deng, R., et al.: Exploration of effective catalysts for diyne polycyclotrimerization, synthesis of an ester-functionalized hyperbranched polyphenylene, and demonstration of its utility as a molecular container with implication for controlled drug delivery. Macromolecules 42, 7367–7378 (2009)CrossRefGoogle Scholar
  11. 11.
    Ifkovits, J.L., Burdick, J.A.: Review: photopolymerizable and degradable biomaterials for tissue engineering applications. Tissue Eng. 13, 2369–2385 (2007)CrossRefPubMedGoogle Scholar
  12. 12.
    Katz, J.S., Burdick, J.A.: Light-responsive biomaterials: development and applications. Macromol. Biosci. 10, 339–348 (2010)CrossRefPubMedGoogle Scholar
  13. 13.
    Ercole, F., Davis, T.T., Evans, R.A.: Photo-responsive systems and biomaterials: photochoromic polymers, light-triggered self-assembly, surface modification, fluorescence modulation ans beyond. Polym. Chem. 1, 37–54 (2010)CrossRefGoogle Scholar
  14. 14.
    Tomatsu, I., Peng, K., Kros, A.: Photoresponsive hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 63, 1257–1266 (2011)CrossRefPubMedGoogle Scholar
  15. 15.
    Fomina, N., Sankaranarayanan, J., Almutairi, A.: Photochemical mechanisms of light-triggered release from nanocarriers. Adv. Drug Deliv. Rev. 64, 1005–1020 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Sortino, S.: Photoactivated nanomaterials for biomedical release applications. J. Mater. Chem. 22, 301–318 (2012)CrossRefGoogle Scholar
  17. 17.
    Zhu, C., Ninh, C., Bettinger, C.J.: Photoreguconfigurable polymers for medical applications: chemistry and macromolecular engineering. Biomacromolecules 15, 3474–3494 (2014)CrossRefPubMedGoogle Scholar
  18. 18.
    Karimi, M., Zangabad, P.S., Baghaee-Ravari, S., Ghazadeh, M., Mirshekari, H., Hamblin, M.R.: Smart nanostructures for cargo delivery: uncaging and activating by light. J. Am. Chem. Soc. 139, 4584–4610 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Xia, P., Zhang, J., Zhao, J., Stenzel, M.H.: Light-induced release of molecules from polymers. Prog. Polym. Sci. 74, 1–33 (2017)Google Scholar
  20. 20.
    Weiner, A.A., Bock, E.A., Gipson, M.E., Shastri, V.P.: Photocrosslinked anhydride systems for long-term protein release. Biomaterials 29, 2400–2407 (2008)CrossRefPubMedGoogle Scholar
  21. 21.
    Hakala, R.A., Korhonen, H., Meretoja, V.V., Seppälä, J.V.: Photo-cross-linked biodegradable poly(ester anhydride) networks prepared from alkenylsuccinic anhydride functionalized poly(ε-caprolactone) precursors. Biomacromolecules 12, 2806–2814 (2011)CrossRefPubMedGoogle Scholar
  22. 22.
    Nakayama, Y., Kim, J.Y., Nishi, S., Ueno, H., Matsuda, T.: Development of high-performance stent: gelatinous photogel-coated stent that permits drug delivery and gene transfer. J. Biomed. Mater. Res. 57, 559–566 (2011)CrossRefGoogle Scholar
  23. 23.
    Chan, B.P., Chan, Q.C.M., So, K.F.: Effects of photo-chemical crosslinking on the microstructure of collagen and a feasibility study on controlled protein release. Acta Biomater. 4, 1627 (2008)CrossRefPubMedGoogle Scholar
  24. 24.
    Chan, Q.C.M., So, K.F., Chan, B.P.: Fabrication of nano-fibrous collagen microspheres for protein delivery and effects of photochemical corsslinking on release kinetics. J. Control. Release 129, 135 (2008)CrossRefPubMedGoogle Scholar
  25. 25.
    Elbadawy, A.: Kamoun and Henning Menzel, Crosslinking behavior of dextran modified with hydroxyethyl methacrylate upon irradiation with visible light—effect of concentration, coinitiator type, and solvent. J. Appl. Polym. Sci. 117, 3128–3138 (2010)Google Scholar
  26. 26.
    Vieira, A.P., Ferreira, P., Coelho, J.F.J., Gil, M.H.: Photocrosslinkable starch based polymers for ophthalmologic drug delivery. Int. J. Biol. Macromol. 43, 325–332 (2008)CrossRefPubMedGoogle Scholar
  27. 27.
    Ferreira, P., Coelho, J.F.J., Almeida, J.F., Gil, M.H.: Photocrosslinkable polymers for biomedical applications. In: Fazel, R. (ed.) Biomedical Engineering—Fronties and Chellenges. In-Tech, pp. 55–74 (2011)Google Scholar
  28. 28.
    Hu, R., Chen, Y.-Y., Zhang, L.-M.: Synthesis and characterization of in situ photogelable polysaccharide derivative for drug delivery. Int. J. Pharm. 393, 96–103 (2010)CrossRefPubMedGoogle Scholar
  29. 29.
    Leach, J.B., Schmidt, C.E.: Characterization of protein release from photocrosslinkable hyaluronic acid-polyethylene glycol hydrogel tissue engineering scaffolds. Biomaterials 26, 125–135 (2005)CrossRefPubMedGoogle Scholar
  30. 30.
    Tripodo, G., Pitarresi, G., Cavallaro, G., Palumbo, F.S., Giammona, G.: Controlled release of IgG by novel UV induced polysaccharide/poly(amino acid) hydrogels. Macromol. Biosci. 9, 393–401 (2009)CrossRefPubMedGoogle Scholar
  31. 31.
    Heo, Y., Lee, H.J., Kim, E.H., Kim, M.K., Ito, Y., Son, T.I.: Regeneration effect of visible-light curing furfuryl alginate compound by release of epidermal growth factor for wound healing application. J. Appl. Polym. Sci. 131, 40113 (2014)CrossRefGoogle Scholar
  32. 32.
    Park, S.-H., Kim, E.-H., Lee, H.-J., Heo, Y., Cho, Y.-M., Seo, S.-Y., Kim, T.-Y., Suh, H.-W., Kim, M.-K., Ito, Y., Nah, J.-W., Son, T.-I.: Wound healing effect of visible light-curable chitosan with encapsulated EGF. Macromol. Res. 24, 336–341 (2016)CrossRefGoogle Scholar
  33. 33.
    Heo, Y., Park, S.-H., Seo, S.-Y., Yun, J.-Y., Ito, Y., Son, T.-I.: Preparation and in vivo evaluation of photo-cured O-carboxymethyl chitosan micro-particle for controlled drug delivery. Macromol. Res. 22, 541–548 (2014)CrossRefGoogle Scholar
  34. 34.
    Mura, S., Nicolas, J., Couvreur, P.: Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12, 991–1003 (2013)CrossRefPubMedGoogle Scholar
  35. 35.
    Liu, J.W., Nie, J., Zhao, Y.F., He, Y.: Preparation and properties of different photoresponsive hydrogels modulated with UV and visible light irradiation. J. Photoch. Photobio. A 211, 20–25 (2010)CrossRefGoogle Scholar
  36. 36.
    Sun, R., Wang, W., Wen, Y., Zhang, X.: Recent advances on mesoporous silica nanoparticle-based controlled release system: intelligent switches open up new horizons. Nanomaterials 5, 2019–2053 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Lu, J., Choi, E., Tamanoi, F., Zink, J.I.: Light-activated nanoimpeller-controlled drug release in cancer cells. Small 4, 421–426 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Yuan, Q., Zhang, Y., Chen, T., Danqing, L., Zhao, Z., Zhang, X., Li, Z., Yan, C.-H., Tan, W.: Photon-manipulated drug release from a mesoporous nanocontainer controlled by azobenzene-modified nucleic acid. ACS Nano 6, 6337–6344 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Yan, H., Teh, C., Sreejith, S., Zhu, L., Kwok, A., Fang, W., Ma, X., Nguyen, K.T., Korzh, V., Zhao, Y.: Functional mesoporous silica nanoparticles for photothermal-controlled drug delivery in vivo. Angew. Chem. Int. Ed. 51, 8373–8377 (2012)CrossRefGoogle Scholar
  40. 40.
    Liu, Y.-C., Le Ny, A.-L.M., Schmidt, J., Talmon, Y., Chmelka, B.F., Lee Jr., C.T.: Photo-assisted gene delivery using light-responsive catanionic vesicles. Langmuir 25, 5713–5724 (2009)CrossRefPubMedGoogle Scholar
  41. 41.
    Tong, R., Hemmati, H.D., Langer, R., Kohane, D.S.: Photoswitchable nanoparticles for triggered tissue penetration and drug delivery. J. Am. Chem. Soc. 134, 8848–8855 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    He, D., He, X., Wang, K., Cao, J., Zhao, Y.: A light-responsive reversible molecule-gated system using thymine-modified mesoporous silica nanoparticles. Langmuir 28, 4003–4008 (2012)CrossRefPubMedGoogle Scholar
  43. 43.
    Bansal, A., Zhang, Y.: Photocontrolled nanoparticle delivery systmes for biomedical applications. Acc. Chem. Res. 47, 3052–3060 (2014)CrossRefPubMedGoogle Scholar
  44. 44.
    Yang, J., Lee, J., Kang, J., Oh, S.-J., Ko, H.-J., Son, J.-H., Lee, K., Suh, J.-S., Huh, Y.-M., Haam, S.: Smart drug-loaded polymer gold nanoshells for systemic and localized therapy of human epithelial cancer. Adv. Mater. 21, 4339–4342 (2009)CrossRefPubMedGoogle Scholar
  45. 45.
    Park, H., Yang, J., Lee, J., Haam, S., Choi, I.H., Yoo, K.H.: Multifunctional nanoparticles for combined doxorubicin and photothermal treatments. ACS Nano 3, 2919–2926 (2009)CrossRefPubMedGoogle Scholar
  46. 46.
    Lee, S.-M., Park, H., Choi, J.-W., Park, Y.-N., Yun, C.-O., Yoo, K.-H.: Multifunctional nanoparticles for targeted chemophotothermal treatment of cancer cells. Angew. Chem. Int. Ed. 50, 7581–7586 (2011)CrossRefGoogle Scholar
  47. 47.
    You, J., Zhang, R., Xiong, C., Zhong, M., Melancon, M., Gupta, S., Nick, A.M., Sood, A.K., Ki, C.: Effective photothermal chemotherapy using doxorubicin-loaded gold nanospheres that target EphB4 receptors in tumors. Cancer Res. 72, 4777–4786 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Ko, H., Son, S., Bae, S., Kim, J.-H., Yi, G.-R., Park, H.: Near-infrared light-triggered thermochemotherapy of cancer using a polymer -gold nanorod conjugate. Nanotechnology 27, 175102 (2016)CrossRefPubMedGoogle Scholar
  49. 49.
    Barroom, A., Huschka, R., Bardhan, R., Knight, M.W., Halas, N.J.: Light-induced release of DNA from plasmon-resonant nanoparticles: towards light-controlled gene therapy. Chem. Phys. Lett. 482, 171–179 (2009)CrossRefGoogle Scholar
  50. 50.
    Xiao, Z., Ji, C., Shi, J., Pridgen, E.M., Frieder, J., Jun, W., Farokhzad, O.C.: DNA self-assembly of targeted near-infrared-responsive gold nanoparticles for cancer thermo-chemotherapy. Angew. Chem. Int. Ed. 54, 11853–11857 (2012)CrossRefGoogle Scholar
  51. 51.
    Chang, Y.-T., Liao, P.-Y., Sheu, H.-S., Tseng, Y.-J., Cheng, F.-Y., Yeh, C.-S.: Near-infrared light-responsive intracellular drug and siRNA release using Au nanoensembles with oligonucleotide-capped silica shell. Adv. Mater. 24, 3309–3314 (2012)CrossRefPubMedGoogle Scholar
  52. 52.
    Agarwal, A., Mackey, M.A., El-Sayed, M.A., Bellamkonda, R.V.: Remote triggered release of doxorubicin in tumors by synergistic application of thermosensitive liposomes and gold nanorods. ACS Nano 5, 4919–4926 (2011)CrossRefPubMedGoogle Scholar
  53. 53.
    Ma, Y., Liang, X., Tong, S., Bao, G., Ren, Q., Dai, Z.: Gold nanoshell nanomicelles for potential magnetic resonance imaging, light-triggered drug release, and photothermal therapy. Adv. Funct. Mater. 23, 815–822 (2013)CrossRefGoogle Scholar
  54. 54.
    Croissant, J., Zink, J.I.: Nanovalve-controlled cargo release activated by plasmonic heating. J. Am. Chem. Soc. 2012, 7628–7631 (2012)CrossRefGoogle Scholar
  55. 55.
    Yavuz, M.S., Cheng, Y., Chen, J., Cobley, C.M., Zhang, Q., Rycenga, M., Xie, J., Kim, C., Song, K.H., Schwartz, A.G., Wang, L.V., Xia, Y.: Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nature Mater. 8, 935–939 (2009)CrossRefGoogle Scholar
  56. 56.
    Lukianova-Hleb, E.Y., Belyanin, A., Kashinath, S., Wu, X., Lapotko, D.O.: Plasmonic nanobubble-enhanced endosomal escape processes for selective and guided intracellular delivery of chemotherapy to drug-resistant cancer cells. Biomaterials 33, 1821–1826 (2012)CrossRefPubMedGoogle Scholar
  57. 57.
    Matteini, P., Tatini, F., Luconi, L., Ratto, F., Rossi, F., Giambastiani, G., Pini, R.: Photothermally activated hybrid films for quantitative confined release of chemical species. Angew. Chem. Int. Ed. 52, 5956–5960 (2013)CrossRefGoogle Scholar
  58. 58.
    Linsley, C.S., Quanch, V.Y., Agrawal, G., Hartnett, E., Wu, B.M.: Visisble light and near infrared-responsive chromophores for drug delivery-on-demand applications. Drug Delv. Transl. Res. 5, 611–624 (2015)CrossRefGoogle Scholar
  59. 59.
    Zan, M., Li, J., Huang, M., Lin, S., Luo, D., Luo, S., Ge, Z.: Near-infrared light-triggered drug release nanogels for combined photothermal-chemotherapy of cancer. Biomater. Sci. 3, 1147–1156 (2015)CrossRefPubMedGoogle Scholar
  60. 60.
    Zhao, P., Zheng, M., Luo, Z., Gong, P., Gao, G., Sheng, Z., Zheng, C., Ma, Y., Cai, L.: NIR-driven smart theranostic nanomedicine for on-demand drug release and synergistic antitumour therapy. Sci. Rep. 5, 14258 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Lajunen, T., Kontturi, L.S., Viitala, L., Manna, M., Cramariuc, O., Róg, T., Bunker, A., Laaksonen, T., Viitala, T., Murtomäki, L., Urtti, A.: Indocyanine green-loaded liposomes for light-triggered drug release. Mol. Pharm. 13, 2095–2107 (2016)CrossRefPubMedGoogle Scholar
  62. 62.
    Luo, D., Li, N., Carter, K.A., Lin, C., Geng, J., Shao, S., Huang, W.-C., Qin, Y., Atilla-Gokcumen, G.E., Lovell, J.F.: Rapid light-triggered drug release in liposomes containing small amounts of unsaturated and porphyrin-phospholipids. Small 22, 3019–3047 (2016)Google Scholar
  63. 63.
    Li, H., Yang, X., Zhou, Z., Wang, K., Li, C., Qiao, H., Oupicky, D., Sun, M.: Near-infrared light-triggered drug release from a multiple lipid carrier complex using an all-in-one strategy. J. Control. Rel. 261, 126–137 (2017)CrossRefGoogle Scholar
  64. 64.
    Viger, M.L., Sheng, W., Doré, K., Alhasan, A.H., Carling, C.J., Lux, J., de Gracia Lux, C.: Near-infrared-induced heating of confined water in polymeric particles for efficient payload release. ACS Nano 8, 4815–4826 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Xu, J., Zhou, X., Gao, Z., Song, Y.-Y., Schmuki, P.: Visible-light-triggered drug release from TiO2 nanotube arrays: a controllable antibacterial platform. Angew. Chem. Int. Ed. 55, 593–597 (2016)CrossRefGoogle Scholar
  66. 66.
    Pasparakis, G., Manouras, T., Argitis, P., Vamvakak, M.: Photodegradable polymers for biotechnological applications. Macromol. Rapid Commun. 33, 183–198 (2012)CrossRefPubMedGoogle Scholar
  67. 67.
    Fomina, N., McFearin, C., Sermsakdi, M., Edigin, O., Almutairi, A.: UV and near-IR triggered release from polymeric nanoparticles. J. Am. Chem. Soc. 132, 9540–9542 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Lv, C., Wang, Z., Wang, P., Tang, X.: Photodegradable polyurethane self-assembled nanoparticles for photocontrollable release. Langmuir 28, 9387–9394 (2012)CrossRefPubMedGoogle Scholar
  69. 69.
    Lv, C., Wang, Z., Wang, P., Tang, X.: Photo degradable polyesters for triggered release. Int. J. Mol. Sci. 13, 16387–16399 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Olejniczak, J., Huu, V.A.N., Lux, J., Grossman, M., He, S., Almutairi, A.: Light-triggered chemical amplification to accelerate degradation and release from polymeric particles. Chem. Commun. 51, 16980–16983 (2015)CrossRefGoogle Scholar
  71. 71.
    Tian, M., Cheng, R., Zhang, J., Liu, Z., Liu, Z., Jiang, J.: Amphiphilic polymer micellar disruption based on main-chain photodegradation. Langmuir 32, 12–18 (2016)CrossRefPubMedGoogle Scholar
  72. 72.
    Carling, C.-J., Viger, M.L., Huu, V.A.N., Garcia, A.V., Almutairi, A.: In vivo visible light-triggered drug release from an implanted depot. Chem. Sci. 6, 335–341 (2015)CrossRefPubMedGoogle Scholar
  73. 73.
    Donato, L., Mourot, A., Davenport, C.M., Herbivo, C., Warther, D., Leonard, J., Bolze, F., Nicoud, J.F., Kramer, R.H., Goeldner, M., Specht, A.: Water-soluble, donor-acceptor biphenyl derivatives in the 2-(o-nitrophenyl)propyl series: highly efficient two-photon uncaging of the neurotransmitter γ-aminobutyric acid at λ = 800 nm. Angew. Chem. Int. Ed. 51, 1840–1843 (2012)CrossRefGoogle Scholar
  74. 74.
    Kloxin, A.M., Kasko, A.M., Salinas, C.N., Anseth, K.S.: Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324, 59–63 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Tibbitt, M.W., Han, B.W., Kloxin, A.M., Anseth, K.S.: Synthesis and application of photodegradable microspheres for spatiotemporal control of protein delivery. J. Biomed. Mater. Res. A 100, 1647–1654 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Azagarsamy, M.A., Alge, D.L., Radhakrishnan, S.J., Tibbitt, M.W., Anseth, K.S.: Photocontrolled nanoparticles for on-demand release of proteins. Biomacromolecules 13, 2219–2224 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Peng, K., Tomatsu, I., van den Broek, B., Cui, C., Korobko, A.V., van Noort, J., Meijer, A.H., Spaink, H.P., Kros, A.: Dextran based photodegradable hydrogels formed via a Michael addition. Soft Matter 7, 4881–4887 (2011)CrossRefGoogle Scholar
  78. 78.
    de Gracia Lux, C., Lux, J., Collet, G., He, S., Cham, M., Olejniczak, J., Foucault-Collet, A., Almutairi, A.: Short soluble coumarin crosslinkers for light-controlled release of cells and proteins from hydrogels. Biomacromolecules 16, 3286–3296 (2015)CrossRefPubMedGoogle Scholar
  79. 79.
    Jiang, J., Tong, X., Zhao, Y.: A new design for light-breakable polymer micelles. J. Am. Chem. Soc. 127, 8290–8291 (2005)CrossRefPubMedGoogle Scholar
  80. 80.
    Griffin, D.R., Patterson, J.T., Kasko, A.M.: Photodegradation as a mechanism for controlled drug delivery. Biotechnol. Bioeng. 107, 1012–1019 (2010)CrossRefPubMedGoogle Scholar
  81. 81.
    Jana, S., Saha, A., Paira, T.K., Mandal, T.K.: Synthesis and self-aggregation of poly(2-ethyl-2-oxazoline)-based photocleavable block copolymer: micelle, compound micelle, reverse micelle, and dye encapsulation/release. J. Phys. Chem. B 120, 813–824 (2016)CrossRefPubMedGoogle Scholar
  82. 82.
    Schroeder, A., Goldberg, M.S., Kastrup, C., Wang, Y., Jiang, S., Joseph, B.J., Levins, C.G., Kannan, S.T., Langer, R., Anderson, D.G.: Remotely activated protein-producing nanoparticles. Nano Lett. 12, 2685–2689 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Monroe, W.T., McQuain, M.M., Chang, M.S., Alexander, J.S.: Targeting expression with light using caged DNA. J. Biol. Chem. 274, 20895–20900 (1999)CrossRefPubMedGoogle Scholar
  84. 84.
    Casey, J.P., Blidner, R.A. Monroe, W.T.: Caged siRNA for spatiotemporal conrol of genesilencing. Mol. Pharm. 6, 699–685 (2009)Google Scholar
  85. 85.
    Nakanishi, J., Nakayama, H., Shimizu, T., Ishida, H., Kikuchi, Y., Yamaguchi, K., Horiike, Y.: Light-regulated activation of cellular signaling by gold nanoparticles that capture and release amines. J. Am. Chem. Soc. 131(11), 3822–3823 (2009)CrossRefPubMedGoogle Scholar
  86. 86.
    Vivero-Escoto, J.L., Slowing, I.I., Wu, C.-W., Lin, V.S.Y.: Photoinduced intracellular controlled release drug delivery in human cells by gold-capped mesoporous silica nanosphere. J. Am. Chem. Soc. 131, 3462–3463 (2009)CrossRefPubMedGoogle Scholar
  87. 87.
    Li, S., Moosa, B.A., Croissant, J.G., Khashab, N.M.: Electrostatic assembly/disassembly of nanoscaled colloidosomes for light-triggered cargo release. Angew. Chem. Int. Ed. 54, 6804–6808 (2015)CrossRefGoogle Scholar
  88. 88.
    Agasti, S.S., Chompoosor, A., You, C.-C., Ghosh, P., Kim, C.K., Rotello, V.M.: Photoregulated release of caged anticancer drugs from gold nanoparticles. J. Am. Chem. Soc. 131, 5728–5729 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Jin, Q., Mitschang, F., Agarwal, S.: Biocompatible drug delivery system for photo-triggered controlled release of 5-fluorouracil. Biomacromol 12, 3684–3691 (2011)CrossRefGoogle Scholar
  90. 90.
    Shah, S., Sasmal, P.K., Lee, K.-B.: Photo-triggerable hydrogel-nanoparticle hybrid scaffolds for remotely controlled drug delivery. J. Mater. Chem. B 2, 7685–7693 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Yan, B., Boyer, J.-C., Habault, D., Branda, N.R., Zhao, Y.: Near infrared light triggered release of biomacromolecules from hydrogels loaded with upconversion nanoparticles. J. Am. Chem. Soc. 134, 16558–16561 (2012)CrossRefPubMedGoogle Scholar
  92. 92.
    Jayakumar, M.K.G., Idris, N.M., Zhang, Y.: Remote activation of biomolecules in deep tissues using near-infrared-to-UV upconversion nanotransducers. Proc. Nat. Acad. Sci. U S A 109, 8483–8488 (2012)CrossRefGoogle Scholar
  93. 93.
    Dai, Y., Xiao, H., Liu, J., Yuan, Q., Ma, P., Yang, D., Li, C., Cheng, Z., Hou, Z., Yang, P., Lin, J.: In vivo multimodality imaging and cancer therapy by near-infrared light-triggered trans-platinum prodrug-conjugated upconverison nanoparticles. J. Am. Chem. Soc. 135, 18920–18929 (2013)CrossRefPubMedGoogle Scholar
  94. 94.
    Li, L.-L., Wu, P., Hwang, K., Lu, Y.: An exceptionally simple strategy for DNA-functionalized up-conversion nanoparticles as biocompatible agents for nanoassembly, DNA delivery, and imaging. J. Am. Chem. Soc. 135, 2411–2414 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Jalani, G., Naccache, R., Rosenzweig, D.H., Haglund, L., Vetrone, F., Cerruti, M.: Photocleavable hydrogel-coated upconverting nanoparticles: a multifunctional theranostic platform for NIR imaging and on-demand macromolecular delivery. J. Am. Chem. Soc. 138, 1078–1083 (2016)CrossRefPubMedGoogle Scholar
  96. 96.
    An, X., Zhu, A., Luo, H., Ke, H., Chen, H., Zhao, Y.: Rational design of multi-stimuli-responsive nanoparticles for precise cancer therapy. ACS Nano 10, 5947–5958 (2016)CrossRefPubMedGoogle Scholar
  97. 97.
    Zhao, X., Qi, M., Liang, S., Tian, K., Zhou, T., Jia, X., Li, J., Liu, P.: Synthesis of photo- and pH dual-sensitive amphiphilic copolymer PEG43-b-P(AA76-co-NBA35-co-tBA9) and its micellization as leakage-free drug delivery system for uv-triggered intracellular delivery of doxorubicin. ACS Appl. Mater. Interfaces. 8, 22127–22134 (2016)CrossRefPubMedGoogle Scholar
  98. 98.
    Pasparakis, G., Manouras, T., Vamvakaki, M., Argitis, P.: Harnessing photochemical internalization with dual degradable nanoparticles for combinatiorial photo-chemotherapy. Nat. Commun. 5, 3623 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Duan, C., Liang, L., Li, L., Zhang, R., Xu, Z.P.: Recent progress in upconversion luminescence nanomaterials for biomedical applications. J. Mater. Chem. B 6, 192–209 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Nano Medical Engineering LaboratoryRIKENWakoJapan
  2. 2.Emergent Bioengineering Materials Research TeamRIKEN Center for Emergent Matter ScienceWakoJapan

Personalised recommendations