Skip to main content

Drug Delivery Systems

  • Chapter
  • First Online:

Abstract

In the development of drug delivery systems, the principles of photochemistry have been exploited for the encapsulation of drugs in matrices as well as their photocontrolled release. For the former purpose, non-biodegradable and biodegradable synthetic matrices have been developed, and natural polymers, including proteins and polysaccharides, have been utilized after derivatization. For the latter use, non-photodegradable and photodegradable systems have been also fabricated. Non-photodegradable systems are based on the response to ultraviolet/visible light and photothermal stimulations. Photodegradable polymers are designed by inserting photodegradable groups in the main chain, crosslinker, or side chains. Near infrared-sensitive polymers have also been utilized for this application. This chapter introduces multiple-triggered release systems with a comprehensive review of these issues.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hoffman, A.S.: Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 64, 18–23 (2012)

    Article  Google Scholar 

  2. Timko, B.P., Whitehead, K., Gao, W., Kohane, D.S., Farokhzad, O., Anderson, D., Langer, R.: Advances in drug delivery. Ann. Rev. Mater. Res. 41, 1–20 (2011)

    Article  CAS  Google Scholar 

  3. Qiu, Y., Park, K.: Environment-sensitive hydrogel for drug delivery. Adv. Drug Deliv. Rev. 64, 49–60 (2012)

    Article  Google Scholar 

  4. Tai, H., Howard, D., Takae, S., Wang, W., Vermonden, T., Hennink, W.E., Stayton, P.S., Hoffman, A.S., Endruweit, A., Alexander, C., Howdle, S.M., Shakesheff, K.M.: Photo-cross-linked hydrogels from thermoresponsive PEGMEMA-PPGMA-EGDMA copolymers containing multiple methacrylate groups: mechanical property, swelling, protein release, and cytotoxicity. Biomacromolecules 10, 2895–2903 (2009)

    Article  CAS  PubMed  Google Scholar 

  5. Zhou, D., Ito, Y.: Visible light-curable polymers for biomedical applications. Sci China Chem. 57, 510–521 (2014)

    Article  CAS  Google Scholar 

  6. Bose, S, Bogner, R.H.: Solvent less visible light-curable coating: I. Critical formulation and processing parameters. Int J Pharmaceut. 393, 32–40 (2010a)

    Article  CAS  PubMed  Google Scholar 

  7. Bose, S, Bogner, R.H.: Solvent less visible light-curable coating: II. Drug release, mechanical strength and photostability. Int J Pharmaceut. 393, 41–47 (2010b)

    Article  CAS  PubMed  Google Scholar 

  8. Shaker, M.A., Dore, J.J.E., Younes, H.M.: Synthesis, characterization and cytocompatibility of a Poly(diol-tricarballylate) visible light photo-cross-linked biodegradable elastomer. J Biomat Sci-Polym E. 21, 507–528 (2010)

    Article  CAS  Google Scholar 

  9. Shaker, M.A., Daneshtalab, N., Dore, J.J.E., Younes, H.M.: Biocompatibility and biodegradability of implantable drug delivery matrices based on novel poly(decane-co-tricarballylate) photocured elastomers. J Bioact Compat Pol. 27, 78–94 (2012)

    Article  CAS  Google Scholar 

  10. Liu, J.Z., Zhang, L., Lam, J.W.Y., Jim, C.K.W., Yue, Y.A., Deng, R., et al.: Exploration of effective catalysts for diyne polycyclotrimerization, synthesis of an ester-functionalized hyperbranched polyphenylene, and demonstration of its utility as a molecular container with implication for controlled drug delivery. Macromolecules 42, 7367–7378 (2009)

    Article  CAS  Google Scholar 

  11. Ifkovits, J.L., Burdick, J.A.: Review: photopolymerizable and degradable biomaterials for tissue engineering applications. Tissue Eng. 13, 2369–2385 (2007)

    Article  CAS  PubMed  Google Scholar 

  12. Katz, J.S., Burdick, J.A.: Light-responsive biomaterials: development and applications. Macromol. Biosci. 10, 339–348 (2010)

    Article  CAS  PubMed  Google Scholar 

  13. Ercole, F., Davis, T.T., Evans, R.A.: Photo-responsive systems and biomaterials: photochoromic polymers, light-triggered self-assembly, surface modification, fluorescence modulation ans beyond. Polym. Chem. 1, 37–54 (2010)

    Article  CAS  Google Scholar 

  14. Tomatsu, I., Peng, K., Kros, A.: Photoresponsive hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 63, 1257–1266 (2011)

    Article  CAS  PubMed  Google Scholar 

  15. Fomina, N., Sankaranarayanan, J., Almutairi, A.: Photochemical mechanisms of light-triggered release from nanocarriers. Adv. Drug Deliv. Rev. 64, 1005–1020 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sortino, S.: Photoactivated nanomaterials for biomedical release applications. J. Mater. Chem. 22, 301–318 (2012)

    Article  CAS  Google Scholar 

  17. Zhu, C., Ninh, C., Bettinger, C.J.: Photoreguconfigurable polymers for medical applications: chemistry and macromolecular engineering. Biomacromolecules 15, 3474–3494 (2014)

    Article  CAS  PubMed  Google Scholar 

  18. Karimi, M., Zangabad, P.S., Baghaee-Ravari, S., Ghazadeh, M., Mirshekari, H., Hamblin, M.R.: Smart nanostructures for cargo delivery: uncaging and activating by light. J. Am. Chem. Soc. 139, 4584–4610 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xia, P., Zhang, J., Zhao, J., Stenzel, M.H.: Light-induced release of molecules from polymers. Prog. Polym. Sci. 74, 1–33 (2017)

    Google Scholar 

  20. Weiner, A.A., Bock, E.A., Gipson, M.E., Shastri, V.P.: Photocrosslinked anhydride systems for long-term protein release. Biomaterials 29, 2400–2407 (2008)

    Article  CAS  PubMed  Google Scholar 

  21. Hakala, R.A., Korhonen, H., Meretoja, V.V., Seppälä, J.V.: Photo-cross-linked biodegradable poly(ester anhydride) networks prepared from alkenylsuccinic anhydride functionalized poly(ε-caprolactone) precursors. Biomacromolecules 12, 2806–2814 (2011)

    Article  CAS  PubMed  Google Scholar 

  22. Nakayama, Y., Kim, J.Y., Nishi, S., Ueno, H., Matsuda, T.: Development of high-performance stent: gelatinous photogel-coated stent that permits drug delivery and gene transfer. J. Biomed. Mater. Res. 57, 559–566 (2011)

    Article  Google Scholar 

  23. Chan, B.P., Chan, Q.C.M., So, K.F.: Effects of photo-chemical crosslinking on the microstructure of collagen and a feasibility study on controlled protein release. Acta Biomater. 4, 1627 (2008)

    Article  CAS  PubMed  Google Scholar 

  24. Chan, Q.C.M., So, K.F., Chan, B.P.: Fabrication of nano-fibrous collagen microspheres for protein delivery and effects of photochemical corsslinking on release kinetics. J. Control. Release 129, 135 (2008)

    Article  CAS  PubMed  Google Scholar 

  25. Elbadawy, A.: Kamoun and Henning Menzel, Crosslinking behavior of dextran modified with hydroxyethyl methacrylate upon irradiation with visible light—effect of concentration, coinitiator type, and solvent. J. Appl. Polym. Sci. 117, 3128–3138 (2010)

    Google Scholar 

  26. Vieira, A.P., Ferreira, P., Coelho, J.F.J., Gil, M.H.: Photocrosslinkable starch based polymers for ophthalmologic drug delivery. Int. J. Biol. Macromol. 43, 325–332 (2008)

    Article  CAS  PubMed  Google Scholar 

  27. Ferreira, P., Coelho, J.F.J., Almeida, J.F., Gil, M.H.: Photocrosslinkable polymers for biomedical applications. In: Fazel, R. (ed.) Biomedical Engineering—Fronties and Chellenges. In-Tech, pp. 55–74 (2011)

    Google Scholar 

  28. Hu, R., Chen, Y.-Y., Zhang, L.-M.: Synthesis and characterization of in situ photogelable polysaccharide derivative for drug delivery. Int. J. Pharm. 393, 96–103 (2010)

    Article  CAS  PubMed  Google Scholar 

  29. Leach, J.B., Schmidt, C.E.: Characterization of protein release from photocrosslinkable hyaluronic acid-polyethylene glycol hydrogel tissue engineering scaffolds. Biomaterials 26, 125–135 (2005)

    Article  CAS  PubMed  Google Scholar 

  30. Tripodo, G., Pitarresi, G., Cavallaro, G., Palumbo, F.S., Giammona, G.: Controlled release of IgG by novel UV induced polysaccharide/poly(amino acid) hydrogels. Macromol. Biosci. 9, 393–401 (2009)

    Article  CAS  PubMed  Google Scholar 

  31. Heo, Y., Lee, H.J., Kim, E.H., Kim, M.K., Ito, Y., Son, T.I.: Regeneration effect of visible-light curing furfuryl alginate compound by release of epidermal growth factor for wound healing application. J. Appl. Polym. Sci. 131, 40113 (2014)

    Article  CAS  Google Scholar 

  32. Park, S.-H., Kim, E.-H., Lee, H.-J., Heo, Y., Cho, Y.-M., Seo, S.-Y., Kim, T.-Y., Suh, H.-W., Kim, M.-K., Ito, Y., Nah, J.-W., Son, T.-I.: Wound healing effect of visible light-curable chitosan with encapsulated EGF. Macromol. Res. 24, 336–341 (2016)

    Article  CAS  Google Scholar 

  33. Heo, Y., Park, S.-H., Seo, S.-Y., Yun, J.-Y., Ito, Y., Son, T.-I.: Preparation and in vivo evaluation of photo-cured O-carboxymethyl chitosan micro-particle for controlled drug delivery. Macromol. Res. 22, 541–548 (2014)

    Article  CAS  Google Scholar 

  34. Mura, S., Nicolas, J., Couvreur, P.: Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12, 991–1003 (2013)

    Article  CAS  PubMed  Google Scholar 

  35. Liu, J.W., Nie, J., Zhao, Y.F., He, Y.: Preparation and properties of different photoresponsive hydrogels modulated with UV and visible light irradiation. J. Photoch. Photobio. A 211, 20–25 (2010)

    Article  CAS  Google Scholar 

  36. Sun, R., Wang, W., Wen, Y., Zhang, X.: Recent advances on mesoporous silica nanoparticle-based controlled release system: intelligent switches open up new horizons. Nanomaterials 5, 2019–2053 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lu, J., Choi, E., Tamanoi, F., Zink, J.I.: Light-activated nanoimpeller-controlled drug release in cancer cells. Small 4, 421–426 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yuan, Q., Zhang, Y., Chen, T., Danqing, L., Zhao, Z., Zhang, X., Li, Z., Yan, C.-H., Tan, W.: Photon-manipulated drug release from a mesoporous nanocontainer controlled by azobenzene-modified nucleic acid. ACS Nano 6, 6337–6344 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yan, H., Teh, C., Sreejith, S., Zhu, L., Kwok, A., Fang, W., Ma, X., Nguyen, K.T., Korzh, V., Zhao, Y.: Functional mesoporous silica nanoparticles for photothermal-controlled drug delivery in vivo. Angew. Chem. Int. Ed. 51, 8373–8377 (2012)

    Article  CAS  Google Scholar 

  40. Liu, Y.-C., Le Ny, A.-L.M., Schmidt, J., Talmon, Y., Chmelka, B.F., Lee Jr., C.T.: Photo-assisted gene delivery using light-responsive catanionic vesicles. Langmuir 25, 5713–5724 (2009)

    Article  CAS  PubMed  Google Scholar 

  41. Tong, R., Hemmati, H.D., Langer, R., Kohane, D.S.: Photoswitchable nanoparticles for triggered tissue penetration and drug delivery. J. Am. Chem. Soc. 134, 8848–8855 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. He, D., He, X., Wang, K., Cao, J., Zhao, Y.: A light-responsive reversible molecule-gated system using thymine-modified mesoporous silica nanoparticles. Langmuir 28, 4003–4008 (2012)

    Article  CAS  PubMed  Google Scholar 

  43. Bansal, A., Zhang, Y.: Photocontrolled nanoparticle delivery systmes for biomedical applications. Acc. Chem. Res. 47, 3052–3060 (2014)

    Article  CAS  PubMed  Google Scholar 

  44. Yang, J., Lee, J., Kang, J., Oh, S.-J., Ko, H.-J., Son, J.-H., Lee, K., Suh, J.-S., Huh, Y.-M., Haam, S.: Smart drug-loaded polymer gold nanoshells for systemic and localized therapy of human epithelial cancer. Adv. Mater. 21, 4339–4342 (2009)

    Article  CAS  PubMed  Google Scholar 

  45. Park, H., Yang, J., Lee, J., Haam, S., Choi, I.H., Yoo, K.H.: Multifunctional nanoparticles for combined doxorubicin and photothermal treatments. ACS Nano 3, 2919–2926 (2009)

    Article  CAS  PubMed  Google Scholar 

  46. Lee, S.-M., Park, H., Choi, J.-W., Park, Y.-N., Yun, C.-O., Yoo, K.-H.: Multifunctional nanoparticles for targeted chemophotothermal treatment of cancer cells. Angew. Chem. Int. Ed. 50, 7581–7586 (2011)

    Article  CAS  Google Scholar 

  47. You, J., Zhang, R., Xiong, C., Zhong, M., Melancon, M., Gupta, S., Nick, A.M., Sood, A.K., Ki, C.: Effective photothermal chemotherapy using doxorubicin-loaded gold nanospheres that target EphB4 receptors in tumors. Cancer Res. 72, 4777–4786 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ko, H., Son, S., Bae, S., Kim, J.-H., Yi, G.-R., Park, H.: Near-infrared light-triggered thermochemotherapy of cancer using a polymer -gold nanorod conjugate. Nanotechnology 27, 175102 (2016)

    Article  CAS  PubMed  Google Scholar 

  49. Barroom, A., Huschka, R., Bardhan, R., Knight, M.W., Halas, N.J.: Light-induced release of DNA from plasmon-resonant nanoparticles: towards light-controlled gene therapy. Chem. Phys. Lett. 482, 171–179 (2009)

    Article  CAS  Google Scholar 

  50. Xiao, Z., Ji, C., Shi, J., Pridgen, E.M., Frieder, J., Jun, W., Farokhzad, O.C.: DNA self-assembly of targeted near-infrared-responsive gold nanoparticles for cancer thermo-chemotherapy. Angew. Chem. Int. Ed. 54, 11853–11857 (2012)

    Article  CAS  Google Scholar 

  51. Chang, Y.-T., Liao, P.-Y., Sheu, H.-S., Tseng, Y.-J., Cheng, F.-Y., Yeh, C.-S.: Near-infrared light-responsive intracellular drug and siRNA release using Au nanoensembles with oligonucleotide-capped silica shell. Adv. Mater. 24, 3309–3314 (2012)

    Article  CAS  PubMed  Google Scholar 

  52. Agarwal, A., Mackey, M.A., El-Sayed, M.A., Bellamkonda, R.V.: Remote triggered release of doxorubicin in tumors by synergistic application of thermosensitive liposomes and gold nanorods. ACS Nano 5, 4919–4926 (2011)

    Article  CAS  PubMed  Google Scholar 

  53. Ma, Y., Liang, X., Tong, S., Bao, G., Ren, Q., Dai, Z.: Gold nanoshell nanomicelles for potential magnetic resonance imaging, light-triggered drug release, and photothermal therapy. Adv. Funct. Mater. 23, 815–822 (2013)

    Article  CAS  Google Scholar 

  54. Croissant, J., Zink, J.I.: Nanovalve-controlled cargo release activated by plasmonic heating. J. Am. Chem. Soc. 2012, 7628–7631 (2012)

    Article  CAS  Google Scholar 

  55. Yavuz, M.S., Cheng, Y., Chen, J., Cobley, C.M., Zhang, Q., Rycenga, M., Xie, J., Kim, C., Song, K.H., Schwartz, A.G., Wang, L.V., Xia, Y.: Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nature Mater. 8, 935–939 (2009)

    Article  CAS  Google Scholar 

  56. Lukianova-Hleb, E.Y., Belyanin, A., Kashinath, S., Wu, X., Lapotko, D.O.: Plasmonic nanobubble-enhanced endosomal escape processes for selective and guided intracellular delivery of chemotherapy to drug-resistant cancer cells. Biomaterials 33, 1821–1826 (2012)

    Article  CAS  PubMed  Google Scholar 

  57. Matteini, P., Tatini, F., Luconi, L., Ratto, F., Rossi, F., Giambastiani, G., Pini, R.: Photothermally activated hybrid films for quantitative confined release of chemical species. Angew. Chem. Int. Ed. 52, 5956–5960 (2013)

    Article  CAS  Google Scholar 

  58. Linsley, C.S., Quanch, V.Y., Agrawal, G., Hartnett, E., Wu, B.M.: Visisble light and near infrared-responsive chromophores for drug delivery-on-demand applications. Drug Delv. Transl. Res. 5, 611–624 (2015)

    Article  CAS  Google Scholar 

  59. Zan, M., Li, J., Huang, M., Lin, S., Luo, D., Luo, S., Ge, Z.: Near-infrared light-triggered drug release nanogels for combined photothermal-chemotherapy of cancer. Biomater. Sci. 3, 1147–1156 (2015)

    Article  CAS  PubMed  Google Scholar 

  60. Zhao, P., Zheng, M., Luo, Z., Gong, P., Gao, G., Sheng, Z., Zheng, C., Ma, Y., Cai, L.: NIR-driven smart theranostic nanomedicine for on-demand drug release and synergistic antitumour therapy. Sci. Rep. 5, 14258 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lajunen, T., Kontturi, L.S., Viitala, L., Manna, M., Cramariuc, O., Róg, T., Bunker, A., Laaksonen, T., Viitala, T., Murtomäki, L., Urtti, A.: Indocyanine green-loaded liposomes for light-triggered drug release. Mol. Pharm. 13, 2095–2107 (2016)

    Article  CAS  PubMed  Google Scholar 

  62. Luo, D., Li, N., Carter, K.A., Lin, C., Geng, J., Shao, S., Huang, W.-C., Qin, Y., Atilla-Gokcumen, G.E., Lovell, J.F.: Rapid light-triggered drug release in liposomes containing small amounts of unsaturated and porphyrin-phospholipids. Small 22, 3019–3047 (2016)

    Google Scholar 

  63. Li, H., Yang, X., Zhou, Z., Wang, K., Li, C., Qiao, H., Oupicky, D., Sun, M.: Near-infrared light-triggered drug release from a multiple lipid carrier complex using an all-in-one strategy. J. Control. Rel. 261, 126–137 (2017)

    Article  CAS  Google Scholar 

  64. Viger, M.L., Sheng, W., Doré, K., Alhasan, A.H., Carling, C.J., Lux, J., de Gracia Lux, C.: Near-infrared-induced heating of confined water in polymeric particles for efficient payload release. ACS Nano 8, 4815–4826 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Xu, J., Zhou, X., Gao, Z., Song, Y.-Y., Schmuki, P.: Visible-light-triggered drug release from TiO2 nanotube arrays: a controllable antibacterial platform. Angew. Chem. Int. Ed. 55, 593–597 (2016)

    Article  Google Scholar 

  66. Pasparakis, G., Manouras, T., Argitis, P., Vamvakak, M.: Photodegradable polymers for biotechnological applications. Macromol. Rapid Commun. 33, 183–198 (2012)

    Article  CAS  PubMed  Google Scholar 

  67. Fomina, N., McFearin, C., Sermsakdi, M., Edigin, O., Almutairi, A.: UV and near-IR triggered release from polymeric nanoparticles. J. Am. Chem. Soc. 132, 9540–9542 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lv, C., Wang, Z., Wang, P., Tang, X.: Photodegradable polyurethane self-assembled nanoparticles for photocontrollable release. Langmuir 28, 9387–9394 (2012)

    Article  CAS  PubMed  Google Scholar 

  69. Lv, C., Wang, Z., Wang, P., Tang, X.: Photo degradable polyesters for triggered release. Int. J. Mol. Sci. 13, 16387–16399 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Olejniczak, J., Huu, V.A.N., Lux, J., Grossman, M., He, S., Almutairi, A.: Light-triggered chemical amplification to accelerate degradation and release from polymeric particles. Chem. Commun. 51, 16980–16983 (2015)

    Article  CAS  Google Scholar 

  71. Tian, M., Cheng, R., Zhang, J., Liu, Z., Liu, Z., Jiang, J.: Amphiphilic polymer micellar disruption based on main-chain photodegradation. Langmuir 32, 12–18 (2016)

    Article  CAS  PubMed  Google Scholar 

  72. Carling, C.-J., Viger, M.L., Huu, V.A.N., Garcia, A.V., Almutairi, A.: In vivo visible light-triggered drug release from an implanted depot. Chem. Sci. 6, 335–341 (2015)

    Article  CAS  PubMed  Google Scholar 

  73. Donato, L., Mourot, A., Davenport, C.M., Herbivo, C., Warther, D., Leonard, J., Bolze, F., Nicoud, J.F., Kramer, R.H., Goeldner, M., Specht, A.: Water-soluble, donor-acceptor biphenyl derivatives in the 2-(o-nitrophenyl)propyl series: highly efficient two-photon uncaging of the neurotransmitter γ-aminobutyric acid at λ = 800 nm. Angew. Chem. Int. Ed. 51, 1840–1843 (2012)

    Article  CAS  Google Scholar 

  74. Kloxin, A.M., Kasko, A.M., Salinas, C.N., Anseth, K.S.: Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324, 59–63 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tibbitt, M.W., Han, B.W., Kloxin, A.M., Anseth, K.S.: Synthesis and application of photodegradable microspheres for spatiotemporal control of protein delivery. J. Biomed. Mater. Res. A 100, 1647–1654 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Azagarsamy, M.A., Alge, D.L., Radhakrishnan, S.J., Tibbitt, M.W., Anseth, K.S.: Photocontrolled nanoparticles for on-demand release of proteins. Biomacromolecules 13, 2219–2224 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Peng, K., Tomatsu, I., van den Broek, B., Cui, C., Korobko, A.V., van Noort, J., Meijer, A.H., Spaink, H.P., Kros, A.: Dextran based photodegradable hydrogels formed via a Michael addition. Soft Matter 7, 4881–4887 (2011)

    Article  CAS  Google Scholar 

  78. de Gracia Lux, C., Lux, J., Collet, G., He, S., Cham, M., Olejniczak, J., Foucault-Collet, A., Almutairi, A.: Short soluble coumarin crosslinkers for light-controlled release of cells and proteins from hydrogels. Biomacromolecules 16, 3286–3296 (2015)

    Article  CAS  PubMed  Google Scholar 

  79. Jiang, J., Tong, X., Zhao, Y.: A new design for light-breakable polymer micelles. J. Am. Chem. Soc. 127, 8290–8291 (2005)

    Article  CAS  PubMed  Google Scholar 

  80. Griffin, D.R., Patterson, J.T., Kasko, A.M.: Photodegradation as a mechanism for controlled drug delivery. Biotechnol. Bioeng. 107, 1012–1019 (2010)

    Article  CAS  PubMed  Google Scholar 

  81. Jana, S., Saha, A., Paira, T.K., Mandal, T.K.: Synthesis and self-aggregation of poly(2-ethyl-2-oxazoline)-based photocleavable block copolymer: micelle, compound micelle, reverse micelle, and dye encapsulation/release. J. Phys. Chem. B 120, 813–824 (2016)

    Article  CAS  PubMed  Google Scholar 

  82. Schroeder, A., Goldberg, M.S., Kastrup, C., Wang, Y., Jiang, S., Joseph, B.J., Levins, C.G., Kannan, S.T., Langer, R., Anderson, D.G.: Remotely activated protein-producing nanoparticles. Nano Lett. 12, 2685–2689 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Monroe, W.T., McQuain, M.M., Chang, M.S., Alexander, J.S.: Targeting expression with light using caged DNA. J. Biol. Chem. 274, 20895–20900 (1999)

    Article  CAS  PubMed  Google Scholar 

  84. Casey, J.P., Blidner, R.A. Monroe, W.T.: Caged siRNA for spatiotemporal conrol of genesilencing. Mol. Pharm. 6, 699–685 (2009)

    Google Scholar 

  85. Nakanishi, J., Nakayama, H., Shimizu, T., Ishida, H., Kikuchi, Y., Yamaguchi, K., Horiike, Y.: Light-regulated activation of cellular signaling by gold nanoparticles that capture and release amines. J. Am. Chem. Soc. 131(11), 3822–3823 (2009)

    Article  CAS  PubMed  Google Scholar 

  86. Vivero-Escoto, J.L., Slowing, I.I., Wu, C.-W., Lin, V.S.Y.: Photoinduced intracellular controlled release drug delivery in human cells by gold-capped mesoporous silica nanosphere. J. Am. Chem. Soc. 131, 3462–3463 (2009)

    Article  CAS  PubMed  Google Scholar 

  87. Li, S., Moosa, B.A., Croissant, J.G., Khashab, N.M.: Electrostatic assembly/disassembly of nanoscaled colloidosomes for light-triggered cargo release. Angew. Chem. Int. Ed. 54, 6804–6808 (2015)

    Article  CAS  Google Scholar 

  88. Agasti, S.S., Chompoosor, A., You, C.-C., Ghosh, P., Kim, C.K., Rotello, V.M.: Photoregulated release of caged anticancer drugs from gold nanoparticles. J. Am. Chem. Soc. 131, 5728–5729 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Jin, Q., Mitschang, F., Agarwal, S.: Biocompatible drug delivery system for photo-triggered controlled release of 5-fluorouracil. Biomacromol 12, 3684–3691 (2011)

    Article  CAS  Google Scholar 

  90. Shah, S., Sasmal, P.K., Lee, K.-B.: Photo-triggerable hydrogel-nanoparticle hybrid scaffolds for remotely controlled drug delivery. J. Mater. Chem. B 2, 7685–7693 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yan, B., Boyer, J.-C., Habault, D., Branda, N.R., Zhao, Y.: Near infrared light triggered release of biomacromolecules from hydrogels loaded with upconversion nanoparticles. J. Am. Chem. Soc. 134, 16558–16561 (2012)

    Article  CAS  PubMed  Google Scholar 

  92. Jayakumar, M.K.G., Idris, N.M., Zhang, Y.: Remote activation of biomolecules in deep tissues using near-infrared-to-UV upconversion nanotransducers. Proc. Nat. Acad. Sci. U S A 109, 8483–8488 (2012)

    Article  Google Scholar 

  93. Dai, Y., Xiao, H., Liu, J., Yuan, Q., Ma, P., Yang, D., Li, C., Cheng, Z., Hou, Z., Yang, P., Lin, J.: In vivo multimodality imaging and cancer therapy by near-infrared light-triggered trans-platinum prodrug-conjugated upconverison nanoparticles. J. Am. Chem. Soc. 135, 18920–18929 (2013)

    Article  CAS  PubMed  Google Scholar 

  94. Li, L.-L., Wu, P., Hwang, K., Lu, Y.: An exceptionally simple strategy for DNA-functionalized up-conversion nanoparticles as biocompatible agents for nanoassembly, DNA delivery, and imaging. J. Am. Chem. Soc. 135, 2411–2414 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Jalani, G., Naccache, R., Rosenzweig, D.H., Haglund, L., Vetrone, F., Cerruti, M.: Photocleavable hydrogel-coated upconverting nanoparticles: a multifunctional theranostic platform for NIR imaging and on-demand macromolecular delivery. J. Am. Chem. Soc. 138, 1078–1083 (2016)

    Article  CAS  PubMed  Google Scholar 

  96. An, X., Zhu, A., Luo, H., Ke, H., Chen, H., Zhao, Y.: Rational design of multi-stimuli-responsive nanoparticles for precise cancer therapy. ACS Nano 10, 5947–5958 (2016)

    Article  CAS  PubMed  Google Scholar 

  97. Zhao, X., Qi, M., Liang, S., Tian, K., Zhou, T., Jia, X., Li, J., Liu, P.: Synthesis of photo- and pH dual-sensitive amphiphilic copolymer PEG43-b-P(AA76-co-NBA35-co-tBA9) and its micellization as leakage-free drug delivery system for uv-triggered intracellular delivery of doxorubicin. ACS Appl. Mater. Interfaces. 8, 22127–22134 (2016)

    Article  CAS  PubMed  Google Scholar 

  98. Pasparakis, G., Manouras, T., Vamvakaki, M., Argitis, P.: Harnessing photochemical internalization with dual degradable nanoparticles for combinatiorial photo-chemotherapy. Nat. Commun. 5, 3623 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Duan, C., Liang, L., Li, L., Zhang, R., Xu, Z.P.: Recent progress in upconversion luminescence nanomaterials for biomedical applications. J. Mater. Chem. B 6, 192–209 (2018)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Ito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ito, Y. (2018). Drug Delivery Systems. In: Ito, Y. (eds) Photochemistry for Biomedical Applications. Springer, Singapore. https://doi.org/10.1007/978-981-13-0152-0_9

Download citation

Publish with us

Policies and ethics