Bioadhesives and Biosealants

  • Yoshihiro ItoEmail author


Recently, in addition to standard adhesives such as fibrin glue and cyanoacrylate derivatives, the processes of photo-polymerization and photo-crosslinkage have been developed for the preparation of bioadhesives and biosealants. Ultraviolet-, visible light-, or infrared-curable bioadhesives and biosealants are reviewed from the standpoint of synthetic and natural polymers in this chapter. The synthetic polymers include acrylate-, epoxy-, and thiol-ene-based polymers, whereas natural polymers are composed of proteins such as gelatin and albumin and polysaccharides such as hyaluronic acid, alginate, chitosan, and dextran.


Adhesive Sealant Photo-initiator Acrylate Epoxy Thiol-ene Protein Polysaccharide 


  1. 1.
    Palacio, M.L.B., Bhushan, B.: Bioadhesion: a review of concepts and applications. Philos Trans. R. Soc. A 370, 2321–2347 (2012)CrossRefGoogle Scholar
  2. 2.
    Mehdizadeh, M., Yang, J.: Design strategies and applications of tissue bioadhesives. Macromol. Biosci. 13, 271–288 (2013)CrossRefPubMedGoogle Scholar
  3. 3.
    Ferreira, P., Coelho, J.F.J., Pereira, R., Silva, A.F.M., Gil, M.H.: Synthesis and characterization of polyethylene glycol pre-polymer to be applied as a bioadhesive. J. Appl. Polym. Sci. 105, 593–601 (2007)CrossRefGoogle Scholar
  4. 4.
    Ferreira, P., Silva, A.F.M., Pinto, M.I., Gil, M.H.: Development of a biodegradable bioadhesive containing urethane groups. J. Mater. Sci.: Mater. Med. 19, 111–120 (2008)PubMedGoogle Scholar
  5. 5.
    Sanabria-DeLong, N., Crosby, A.J., Tew, G.N.: Photo-cross-linked PLA-PEO-PLA hydrogels from self-assembled physical networks: mechanical properties and influence of assumed constitutive relationships. Biomacromolecules 9, 2784–2791 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lang, N., Pereira, M.J., Lee, Y., Friehs, I., Vasilyev, N.V., Feins, E.N., Ablasser, K., O’Cearbhaill, E.D., Xu, C., Fabozzo, A., Padera, R., Wasserman, S., Freudenthal, F., Ferreira, L.S., Langer, R., Karp, J.M., del Nido, P.J.: A blood-resistant surgical glue for minimally invasive repair of vessels and heart defects. Sci. Trans. Med. 6, 218 (2014)CrossRefGoogle Scholar
  7. 7.
    Forooshani, P.K., Lee, B.P.: Recent approaches in designing bioadhesive materials inspired by mussel adhesive protein. J. Polym. Sci., A: Polym. Chem. 55, 9–33 (2017)CrossRefGoogle Scholar
  8. 8.
    Xue, J., Wang, T., Nie, J., Yang, D.: Preparation and characterization of a photocrosslinkable bioadhesive inspired by marine mussel. J. Photochem. Photobiol., B 119, 31–36 (2013)CrossRefGoogle Scholar
  9. 9.
    Ortega, A.M., Kaspzak, S.E., Yakacki, C.M., Diani, J., Greenberg, A.R., Gall, K.: Structure-property relationships in photopolymerizable polymer networks: effect of composition on the crosslinked structure and resulting thermomechanical properties of a (meth)acrylate-based system. J. Appl. Polym. Sci. 110, 1559–1572 (2008)CrossRefGoogle Scholar
  10. 10.
    Rydhholm, A.E., Reddy, S.K., Anseth, K.S., Bowman, C.N.: Development and characterization of degradable thiol-allyl ether photopolymers. Polymer 48, 4589–4600 (2007)CrossRefGoogle Scholar
  11. 11.
    Schuster, M., Yurecek, C., Weigel, G., Saf, R., Stampfl, J., Varga, F., Liska, R.: Gelatin-based photopolymers for bone replacement materials. J. Polym. Sci. A: Polym. Chem. 47, 7078–7089 (2009)CrossRefGoogle Scholar
  12. 12.
    Seiffert, S., Oppermann, W., Saalwachter, K.: Hydrogel formation by photocrosslinking of dimethylmaleimide functionalized polyacrylamide. Polymer 48, 5599–5611 (2007)CrossRefGoogle Scholar
  13. 13.
    Tai, H., Takae, D.H.S., Wang, W., Vermonden, T., Hennink, W.E., Stayon, P.S., Hoffman, A.S., Endruweit, A., Alexander, C., Howdle, T.M., Shakesheff, K.M.: Thermoresponsive and photocrosslinkable PEGMEMA-PPGMA-EGDMA copolymers from a one-step ATRP synthesis. Biomacromolecules 10, 2895–2903 (2009)CrossRefPubMedGoogle Scholar
  14. 14.
    Li, Q., Wang, J., Shahani, S., Sun, D.D., Sharma, B., Elisseeff, J.H., Leong, K.W.: Biodegradable and photocrosslinkable polyphosphoester hydrogel. Biomaterials 27, 1027–1034 (2006)CrossRefPubMedGoogle Scholar
  15. 15.
    Michaudel, Q., Kottisch, V., Fors, B.P.: Cationic polymerization: from photoinitiation to photocontrol. Angew. Chem. Int. Ed. 56, 9670–9679 (2017)CrossRefGoogle Scholar
  16. 16.
    Shih, H., Lin, C.-C.: Cross-linking and degradation of step-growth hydrogels formed by thiol-ene photoclick chemistry. Biomacromolecules 13, 2003–2012 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lin, T.-Y., Ki, C.S., Lin, C.-C.: Manipulating hepatocellular carcinoma cell fate in orthogonally cross-linked hydrogels. Biomaterials 35, 6898–6906 (2014)CrossRefPubMedGoogle Scholar
  18. 18.
    Rothemund, S., Aigner, T.B., Iturmendi, A., Rigau, M., Husár, B., Hildner, F., Oberbauer, E., Prambauer, M., Olawale, G., Forstner, R., Liska, R., Schröder, K.R., Brüggemann, O., Teasdale, I.: Degradable glycine-based photo-polymerizable polyphosphazenes for use as scaffolds for tissue regeneration. Macromol. Biosci. 15, 351–363 (2015)CrossRefPubMedGoogle Scholar
  19. 19.
    Vesperinasm, A., Eastoe, J., Wyatt, P., Grilo, I., Heenan, R.K.: Photosensitive gelatin. Chem. Commun. 42, 4407–4409 (2006)CrossRefGoogle Scholar
  20. 20.
    Chung, D.J., Matsuda, T.: Gelatin modification with photocuring thymine derivative and its application for homestatic aid. J. Ind. Eng. Chem. 4, 340–344 (1998)Google Scholar
  21. 21.
    Nakayama, Y., Matsuda, T.: Photocurable surgical tissue adhesive glues composed of photoreactive gelatin and poly(ethylene glycol) diacrylate. J. Biomed. Mater. Res. 48(4), 511–521 (1999)CrossRefPubMedGoogle Scholar
  22. 22.
    Matsuda T, Moghaddam MJ, Miwa H, Sakurai K, Iida F.: Photoinduced prevention of tissue adhesion. ASAIO J. 1992 38(3), M154-7 (1992)CrossRefPubMedGoogle Scholar
  23. 23.
    Ding, K.F.C., Hsu, S.H., Chiang, Y.W.: Synthesis of a new photoreactive gelatin with BTDA and HEMA derivatives. J Apply. Polym. Sci. 109, 589–596 (2008)CrossRefGoogle Scholar
  24. 24.
    Qin, X.-H., Torgersen, J., Saf, R., Muehleder, S., Pucher, N., Ligon, S.C., Holnthoner, W., Redl, H., Ovsianikov, A., Stampfl, J., Liska, R.: Three-dimensional microfabrication of protein hydrogels via two-photon-excited thiol-vinyl ester photopolymerization. J. Polym. Sci., Part A: Polym. Chem. 51, 4799–4810 (2013)CrossRefGoogle Scholar
  25. 25.
    Miyamoto, K., Sasaki, M., Minamisawa, Y., Kurahashi, Y., Kano, H., Ishikawa, S.: Evaluation of in vivo biocompatibility and biodegradation of photocrosslinked hyaluronate hydrogels (HADgels). J. Biomed. Mater. Res. A 70, 550–559 (2004)CrossRefPubMedGoogle Scholar
  26. 26.
    Wells, L.A., Furukawa, S., Sheardown, H.: Photoresponsive PEG-anthracene grafted hyaluronan as a controlled delivery biomaterials. Biomacromolecules 12, 923–932 (2011)CrossRefPubMedGoogle Scholar
  27. 27.
    Brigham, M.D., Bick, A., Lo, E., Bendali, A., Burdick, J.A., Khademhosseini, A.: Mechanically robust and bioadhesive collagen and photocrosslinkable hyaluronic acid semi-interpenetrating networks. Tissue Eng. Part A 15, 1645–1653 (2009)CrossRefPubMedGoogle Scholar
  28. 28.
    Qin, X.-H., Gruber, P., Markovic, M., Plochberger, B., Klotzsch, E., Stampfl, J., Ovsianikov, A., Liska, R.: Enzymatic synthesis of hyaluronic acid vinyl esters for two-photon microfabrication of biocompatible and biodegradable hydrogel constructs. Polym. Chem. 5, 6523–6533 (2014)CrossRefGoogle Scholar
  29. 29.
    Jeon, O., Bouhadir, K.H., Mansour, J.M., Alsberg, E.: Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties. Biomaterials 30, 2724–2734 (2009)CrossRefPubMedGoogle Scholar
  30. 30.
    Jeon, O., Samorezov, J.E., Alsberg, E.: Single and dual crosslinked oxidized methacrylated alginate/PEG hydrogels for bioadhesive applications. Acta Biomat. 10, 47–55 (2014)CrossRefGoogle Scholar
  31. 31.
    Ono, K., Ishihara, M, Ozeki, Y., Deguchi, H., Sato, M., Saito, Y., Yura, H., Sato, M., Kikuchi, M., Kurita, A., Maehara, T.: Experimental evaluation of photocrosslinkable chitosan as a biologic adhesive with surgical applications. Surgery 130, 844–850 (2001)CrossRefPubMedGoogle Scholar
  32. 32.
    Wang, T., Nie, J., Yang, D.: Dextran and gelatin based photocrosslinkable tissue adhesive. Carbohydr. Polym. 90, 1423–1436 (2012)Google Scholar
  33. 33.
    Wang, T., Mu, X., Li, H., Wu, W., Nie, J., Yang, D.: The photocrosslinkable tissue adhesive based on copolymeric dextran/HEMA. Carbohydr. Polym. 92, 1423–1431 (2013)CrossRefPubMedGoogle Scholar
  34. 34.
    Li, C., Wang, T., Hu, L., Wei, Y., Liu, J., Mu, X., Nie, J., Yang, D.: Photocrosslinkable bioadhesive based on dextran and PEG derivatives. Mater. Sci. Eng., C 35, 300–306 (2014)CrossRefGoogle Scholar
  35. 35.
    Lindahl, T.: Instability and decay of the primary structure of DNA. Nature 362, 709–715 (1993)CrossRefPubMedGoogle Scholar
  36. 36.
    Davies, H., Bignell, G.R., Cox, C., Stephens, P., Edkins, S., Clegg, S., et al.: Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002)CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Zhou, D., Ito, Y.: Visible light-curable polymers for biomedical applications. Sci. China Chem. 57, 510–521 (2014)CrossRefGoogle Scholar
  38. 38.
    Fung, L.C., Mingin, G.C., Massicotte, M., Felsen, D., Poppas, D.P.: Effects of temperature on tissue thermal injury and wound strength after photochemical wound closure. Lasers Surg. Med. 25, 285–290 (1999)CrossRefPubMedGoogle Scholar
  39. 39.
    Ito, T., Matsuda, T.: Development of photocurable medical use resins: molecular design & properties. Jap. J. Artif. Organs 18, 132–136 (1989)Google Scholar
  40. 40.
    Sawhney, A.S., Pathak, C.P., Hubbell, J.A.: Bioerodible hydrogels based on photopolymerized poly(ethylene glycol)-co-poly(α-hydroxy acid) diacrylate macromers. Macromolecules 26, 581–587 (1993)CrossRefGoogle Scholar
  41. 41.
    Grinstaff, M.W.: Designing hydrogel adhesives for corneal wound repair. Biomaterials 28, 5205–5214 (2007)CrossRefPubMedGoogle Scholar
  42. 42.
    Degoricija, L., Bansal, P.N., Soentjens, S.H.M., Joshi, N.S., Takahashi, M., Snyder, B., Grinstaff, M.W.: Hydrogels for osteochondral repair based on photocrosslinkable carbamate dendrimers. Biomacromolecule 9, 2863–2872 (2008)CrossRefGoogle Scholar
  43. 43.
    Weiner, A.A., Shuck, D.M., Bush, J.R., Prasad, Shastri V.: In vitro degradation characteristics of photocrosslinked anhydride systems for bone augmentation applications. Biomaterials 28, 5259–5270 (2007)CrossRefPubMedGoogle Scholar
  44. 44.
    Lee, B.P., Huang, K., Nunalee, F.N., Shull, K.R., Messersmith, P.B.: Synthesis of 3,4-dihydroxyphenylalanine (DOPA) containing monomers and their co-polymerization with PEG-diacrylate to form hydrogels. J Biomater. Sci., Polym. Ed. 15, 449–464 (2004)CrossRefGoogle Scholar
  45. 45.
    Papavasiliou, G., Songprawat, P., Perez-Luna, V., Hammes, E., Morris, M., Chiu, Y.C., Brey, E.: Three-dimensional patterning of poly(ethylene glycol) hydrogels through surface-initiated photopolymerization. Tissue Eng Part C 14, 129–140 (2008)CrossRefGoogle Scholar
  46. 46.
    Zhang, H.B., Wang, L., Song, L., Niu, G.G., Cao, H., Wang, G.J., et al.: Controllable properties and microstructure of hydrogels based on crosslinked poly(ethylene glycol) diacrylates with different molecular weights. J. Appl. Polym. Sci. 121, 531–540 (2011)CrossRefGoogle Scholar
  47. 47.
    Burdick, J.A., Philpott, L.M., Anseth, K.S.: Synthesis and characterization of tetrafunctional lactic acid oligomers: a potential in situ forming degradable orthopaedic biomaterial. J. Polym. Sci. Polym. Chem. 39, 683–692 (2001)CrossRefGoogle Scholar
  48. 48.
    Zhang, K., Simon, C.G., Washburn, N.R., Antonucci, J.M., Lin-Gibson, S.: In situ formation of blends by photopolymerization of poly(ethylene glycol) dimethacrylate and polylactide. Biomacromolecules 6, 1615–1622 (2005)CrossRefPubMedGoogle Scholar
  49. 49.
    Yu, Y., Zhang, H., Zhang, C.H., Cui, S.X.: Facile fabrication of robust multilayer films: visible light-triggered chemical cross-linking by the catalysis of a ruthenium(II) complex. Chem. Commun. 47, 929–931 (2011)CrossRefGoogle Scholar
  50. 50.
    Rivarola, C.R., Biasutti, M.A., Barbero, C.A.: A visible light photoinitiator system to produce acrylamide based smart hydrogels: Ru (bpy) (3) (+2) as photopolymerization initiator and molecular probe of hydrogel microenvironments. Polymer 50, 3145–3152 (2009)CrossRefGoogle Scholar
  51. 51.
    Gomez, M.L., Fasce, D.P., Williams, R.J., Erra-Balsells, R., Fatema, M.K., Nonami, H.: Silsesquioxane functionalized with methacrylate and amine groups as a crosslinker/co-initiator for the synthesis of hydrogels by visible-light photopolymerization. Polymer 49, 3648–3653 (2008)CrossRefGoogle Scholar
  52. 52.
    Li, C., Sajiki, T., Nakayama, Y., Fukui, M., Matsuda, T.: Novel visible-light-induced photocurable tissue adhesive composed of multiply styrene-derivatized gelatin and poly(ethylene glycol) diacrylate. J. Biomed. Mater. Res. B Appl. Biomater. 66, 439–446 (2003)CrossRefPubMedGoogle Scholar
  53. 53.
    Nakayama, Y., Kameo, T., Ohtaka, A., Hirano, Y.: Enhancement of visible light-induced gelation of photocurable gelatin by addition of polymeric amine. J. Photochem. Photobiol. A Chem. 177, 205–211 (2006)CrossRefGoogle Scholar
  54. 54.
    Fukaya, C., Nakayama, Y., Murayama, Y., Omata, S., Ishikawa, A., Hosaka, Y., Nakagawa, T.: Improvement of hydrogelation abilities and handling of photocurable gelatin-based crosslinking materials. J. Biomed. Mater. Res. B Appl. Biomater. 91, 329–336 (2009)CrossRefPubMedGoogle Scholar
  55. 55.
    Son, T.I., Sakuragi, M., Takahashi, S., Obuse, S., Kang, J., Fujishiro, M., Matsushita, H., Gong, J., Shimizu, S., Tajima, Y., Yoshida, Y., Suzuki, K., Yamamoto, T., Nakamura, M., Ito, Y.: Visible light-induced crosslinkable gelatin. Acta Biomat. 6, 4005–4010 (2010)CrossRefGoogle Scholar
  56. 56.
    Park, S.H., Seo, S.Y., Lee, H.J., Na, H.N., Lee, J.W., Woo, H.D., et al.: Preparation of Furfuryl-fish gelatin (F-f.gel) cured using visible-light and its application as an anti-adhesion agent. Macromol. Res. 20, 842–846 (2012)CrossRefGoogle Scholar
  57. 57.
    Kitajima, T., Obuse, S., Adachi, T., Tomita, M., Ito, Y.: Recombinant human gelatin substitute with photoreactive properties for cell culture and tissue engineering. Biotechnol. Bioeng. 108, 2468–2476 (2011)CrossRefPubMedGoogle Scholar
  58. 58.
    Mazaki, T., Shiozaki, Y., Yamane, K., Yoshida, A., Nakamura, M., Yoshida, Y., Zhou, D., Kitajima, T., Tanaka, M., Ito, Y., Ozaki, T., Matsukawa, A.: A novel, visible light-induced, rapidly cross-linkable gelatin scaffold for osteochondral tissue engineering. Sci. Rep. 4, 4457 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Yamane, K., Mazaki, T., Shiozaki, Y., Yoshida, A., Shinohara, K., Nakamura, M., Yoshida, Y., Zhou, D., Kitajima, T., Tanaka, M., Ito, Y., Ozaki, T., Matsukawa, A.: Collagen-binding hepatocyte growth factor (HGF) alone or with a gelatin-furfurylamine hydrogel enhances functional recovery in mice after spinal cord injury. Sci. Rep. 8, 917 (2018)Google Scholar
  60. 60.
    Elvin, C.M., Carr, A.G., Huson, M.G., Maxwell, J.M., Pearson, R.D., Vuocolo, T., Liyou, N.E., Wong, D.C.C., Merritt, D.J., Dixon, N.E.: Synthesis and properties of crosslinked recombinant pro-resilin. Nature 437, 999–1002 (2005)CrossRefPubMedGoogle Scholar
  61. 61.
    Elvin, C.M., Brownlee, A.G., Huson, M.G., Tebb, T.A., Kim, M., Lyons, R.E., Vuocolo, T., Liyou, N.E., Hughes, T.C., Ramshaw, J.A., Werkmeister, J.A.: The development of photochemically crosslinked native fibrinogen as a rapidly formed and mechanically strong surgical tissue sealant. Biomaterials 30, 2059–2065 (2009)CrossRefPubMedGoogle Scholar
  62. 62.
    Elvin, C.M., Danon, S.J., Brownlee, A.G., White, J.F., Hickey, M., Liyou, N.E., Edwards, G.A., Ramshaw, J.A., Werkmeister, J.A.: Evaluation of photo-crosslinked fibrinogen as a rapid and strong tissue adhesive. J. Biomed. Mater. Res. A 93, 687–695 (2010)PubMedGoogle Scholar
  63. 63.
    Elvin, C.M., Vuocolo, T., Brownlee, A.G., Sando, L., Huson, M.G., Liyou, N.E., Stockwell, P.R., Lyons, R.E., Kim, M., Edwards, G.A., Johnson, G., McFarland, G.A., Ramshaw, J.A., Werkmeister, J.A.: A highly elastic tissue sealant based on photopolymerised gelatin. Biomaterials 31, 8323–8331 (2010)CrossRefPubMedGoogle Scholar
  64. 64.
    Sando, L., Kim, M., Colgrave, M.L., Ramshaw, J.A.M., Werkmeister, J.A., Elvin, C.M.: Photochemical crosslinking of soluble wool keratins produces a mechanically stable biomaterial that supports cell adhesion and proliferation. J. Biomed. Mater. Res. A 95, 901–911 (2010)CrossRefPubMedGoogle Scholar
  65. 65.
    Sando, L., Danon, S., Brownlee, G., McCulloch, R.J., Ramshaw, J.A.M., Elvin, C.M., Werkmeister, J.A.: Photochemically crosslinked matrices of gelatin and fibrinogen promote rapid cell proliferation. J. Tissue Eng. Regener. Med. 5, 337–346 (2011)CrossRefGoogle Scholar
  66. 66.
    Truong, M.Y., Dutta, N.K., Choudhury, N.R., Kim, M., Elvin, C.M., Nairn, K.M., Hill, A.J.: The effect of hydration on molecular chain mobility and the viscoelastic behavior of resilin-mimetic protein-based hydrogels. Biomaterials 32, 8462–8473 (2011)CrossRefPubMedGoogle Scholar
  67. 67.
    Vashi, A.V., Werkmeister, J.A., Vuocolo, T., Elvin, C.M., Ramshaw, J.A.M.: Stabilization of collagen tissues by photocrosslinking. J. Biomed. Mater. Res. A 100, 2239–2243 (2012)PubMedGoogle Scholar
  68. 68.
    Vuocolo, T., Haddad, R., Edwards, G.A., Lyons, R.E., Liyou, N.E., Werkmeister, J.A., Ramshaw, J.A., Elvin, C.M.: A highly elastic and adhesive gelatin tissue sealant for gastrointestinal surgery and colon anastomosis. J. Gastrointest. Surg. 16, 744–752 (2012)CrossRefPubMedGoogle Scholar
  69. 69.
    Lauto, A., Foster, L.J., Ferris, L., Avolio, A., Zwaneveld, N., Poole-Warren, L.A.: Albumin-genipin solder for laser tissue repair. Lasers Surg. Med. 35, 140–145 (2004)CrossRefPubMedGoogle Scholar
  70. 70.
    Kim, S.H., Chu,C.C.: Visible light induced dextran-methacrylate hydrogel formation using (−)-riboflavin vitamin B2 as a photoinitiator and L-arginine as a co-initiator. Fibers Polym. 10, 14–22 (2009)CrossRefGoogle Scholar
  71. 71.
    Kim, K.I., Na, H.N., Ito, Y., Son, T.I.: Synthesis of visible light-induced cross-linkable chitosan as an anti-adhesive agent. Macromol. Res. 19, 216–220 (2011)CrossRefGoogle Scholar
  72. 72.
    Seo, S.Y., Park, S.H., Lee, H.J., Na, H.N., Kim, K.I., Han, D.K., et al.: Visible light-induced photocurable (forming a film) low molecular weight chitosan derivatives for biomedical applications: synthesis, characterization and in vitro biocompatibility. J. Ind. Eng. Chem. 18, 1258–1262 (2012)CrossRefGoogle Scholar
  73. 73.
    Na, H.N., Park, S.H., Kim, K.I., Kim, M.K., Son, T.I.: Photocurable O-carboxymethyl chitosan derivatives for biomedical applications: Synthesis, in vitro biocompatibility, and their wound healing effects. Macromol. Res. 20, 1144–1149 (2012)CrossRefGoogle Scholar
  74. 74.
    Park, S.H., Seo, S.Y., Na, H.N., Kim, K.I., Lee, J.W., Woo, H.D., et al.: Preparation of a visible light-reactive low molecular-O-carboxymethyl chitosan (LM-O-CMCS) derivative and applicability as an anti-adhesion agent. Macromol. Res. 19, 921–927 (2011)CrossRefGoogle Scholar
  75. 75.
    Park S.H., Han G.-D., Kim J.-W., Noh S.-H., Lee, J.-G., Itom Y., Son, T.-I.: Visible and UV-curable chitosan derivatives for immobilization of biomolecules. Int. J. Biol. Macromol. 104, 1611–1619 (2017)Google Scholar
  76. 76.
    Yang, D.H., Seo, D.I., Lee, D.-W., Bhang, S.H., Park, K.S., Jang, G., Kim, C.H., Chun, H.J.: Preparation and evaluation of visible-light cured glycol chitosan hydrogel dressing containing dual growth factors for accelerated wound healing. J. Ind. Eng. Chem. 53, 360–370 (2017)CrossRefGoogle Scholar
  77. 77.
    Yoon, S.-J., Hyun, H., Lee, D.-W., Yang, D.H.: Visible light-cured glycol chitosan hydrogel containing a beta-cyclodextrin-curcumin inclusion complex improves wound healing in vivo. Molecules 22, 1513 (2017)CrossRefGoogle Scholar
  78. 78.
    Nan, Xu, Yao, Min, Farinelli, William, Hajjarian, Zeinab, Wang, Ying, Redmond, Robert W., Kochevar, Irene E.: Light-activated sealing of skin wounds. Lasers Surg. Med. 47, 17–29 (2015)CrossRefGoogle Scholar
  79. 79.
    Matteini, P., Ratto, F., Rossi, F., Centi, S., Dei, L., Pini, R.: Chitosan films doped with gold nanorods as laser-activatable hybrid bioadhesives. Adv. Mater. 22, 4313–4316 (2010)CrossRefPubMedGoogle Scholar
  80. 80.
    Matteini, P., Ratto, F., R, Francesca, Pini, R.: Emerging concept of lasse-activated nanoparticles for tissue bonding. J. Biomed. Opt. 17, 010701 (2012)CrossRefPubMedGoogle Scholar
  81. 81.
    Foster, L.J.R., Karsten, E.: A chitosan based, laser activated thin film surgical adhesive, ‘SurgiLux’: preparation and demonstration. J. Visualized Exp. 68, 3527 (2012)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Nano Medical Engineering LaboratoryRIKENWakoJapan
  2. 2.Emergent Bioengineering Materials Research TeamRIKEN Center for Emergent Matter ScienceWakoJapan

Personalised recommendations