Dental Resin

  • Kumiko Yoshihara
  • Yasuhiro YoshidaEmail author


Tooth-colored dental resins are widely used. Dental resins divide broadly into two categories: chemical-curing type and light-curing type. In this chapter, we discuss the photochemistry in dentistry such as several sorts of curing system and reaction. In order to understand resin materials for dental purposes, two main points have to be concerned: One is “adhesion” or “bonding” to tooth substrates, and the other is “curing” for setting of resin-based materials. Dental resins themselves do not provide bonding ability to tooth substrates; tooth-colored dental resins need additional adhesives before dental resin filling. Without setting through polymerization of dental monomers, resin-based materials cannot stably exist in a severe oral condition. Insufficient polymerization causes dental resin degradation and secondary caries. In order to improve polymerization, initiators for curing and curing devices have been developed to improve polymerization. Therefore, at first the structure of tooth is explained in brief to understand “adhesion” to tooth substrates, enamel and dentin. Then, the history of the development of tooth-colored dental resins and adhesive resins is then introduced. Next, curing systems used in dental resin materials are explained. Moreover, toxicity of dental resin and future research opportunities are included.


Dental resin Adhesion Curing Polymerization Photo-initiator Teeth 


  1. 1.
    Ten Cate, A.R.: Oral Historogy: Development, Structure and Function, 7th edn. Mosby, St Luis, Mussouri (2008)Google Scholar
  2. 2.
    Imbeni, V., Nalla, R.K., Bosi, C., Kinney, J.H., Ritchie, R.O.: On the in vitro fracture toughness of human dentin. J. Biomed. Mater. Res. A 66, 1–9 (2003)CrossRefPubMedGoogle Scholar
  3. 3.
    Braly, A., Darnell, L.A, Mann, A.B., Teaford, M.F., Weihs, T.P.: The effect of prism orientation on the indentation testing of human molar enamel. Arch. Oral Biol. 52(9), 856–860 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Laurance-Young, P., Bozec, L., Gracia, L., Rees, G., Lippert, F., Lynch, R.J., Knowles, J.C.: A review of the structure of human and bovine dental hard tissues and their physicochemical behaviour in relation to erosive challenge and remineralisation. J. Dent. 39(4), 266–272 (2011)CrossRefPubMedGoogle Scholar
  5. 5.
    Kinney, J.H., Marshall, S.J., Marshall, G.W.: The mechanical properties of human dentin: a critical review and re-evaluation of the dental literature. Crit. Rev. Oral Biol. Med. 14(1), 13–29 (2003)CrossRefGoogle Scholar
  6. 6.
    Xue, J., Zavgorodniy, A.V., Kennedy, B.J., Swain, M.V., Li, W.: X-ray microdiffraction, TEM characterization and texture analysis of human dentin and enamel. J. Microsc. 251(2), 144–153 (2013)CrossRefPubMedGoogle Scholar
  7. 7.
    Van Landuyt, K.L., Snauwaert, J., De Munck, J., Peumans, M., Yoshida, Y., Poitevin, A., Coutinho, E., Suzuki, K., Lambrechts, P., Van Meerbeek, B.: Systematic review of the chemical composition of contemporary dental adhesives. Biomaterials 28(26), 3757–3785 (2007)CrossRefPubMedGoogle Scholar
  8. 8.
    Nakabayashi, N., Nakamura, M., Yasuda, N.: Hybrid layer as a dentin-bonding mechanism. J. Esthet. Dent. 3(4), 133–138 (1991)CrossRefGoogle Scholar
  9. 9.
    Nakabayashi, N., Kojima, K., Masuhara, E.: The promotion of adhesion by the infiltration of monomers into tooth substrates. J. Biomed. Mater. Sci. 16, 265–273 (1982)CrossRefGoogle Scholar
  10. 10.
    Gwinnett, A.J.: Moist versus dry dentin: its effect on shear bond strength. Am. J. Dent. 5, 127–129 (1992)PubMedGoogle Scholar
  11. 11.
    Kanca, J.: Effect of resin primer solvents and surface wetness on resin composite bond strength to dentin. Am. J. Dent. 5, 213–215 (1992)PubMedGoogle Scholar
  12. 12.
    Tay, F.R., Gwinnett, A.J., Wei, S.H.: The overwet phenomenon: a transmission electron microscopic study of surface moisture in the acid-conditioned, resin–dentin interface. Am. J. Dent. 9, 161–166 (1996)PubMedGoogle Scholar
  13. 13.
    Peumans, M., Kanumilli, P., De Munck, J., Van Landuyt, K., Lambrechts, P., Van Meerbeek, B.: Clinical effectiveness of contemporary adhesives: a systematic review of current clinical trials. Dent. Mater. 21, 864–881 (2005)CrossRefPubMedGoogle Scholar
  14. 14.
    Peumans, M., De Munck, J., Van Landuyt, K.L., Poitevin, A., Lambrechts, P., Van Meerbeek, B.: Eight-year clinical evaluation of a two-step self-etch adhesive with and without selective enamel etching. Dent. Mater. 1176–1184 (2010)CrossRefPubMedGoogle Scholar
  15. 15.
    Akimoto, N., Takamizu, M., Momoi, Y.: 10-year clinical evaluation of a self-etching adhesive system. Oper. Dent. 32, 3–10 (2007)CrossRefPubMedGoogle Scholar
  16. 16.
    Carvalho, R.M., Chersoni, S., Frankenberger, R., Pashley, D.H., Prati, C., Tay, F.R.: A challenge to the conventional wisdom that simultaneous etching and resin infiltration always occurs in self-etch adhesives. Biomaterials 26, 1035–1042 (2005)CrossRefPubMedGoogle Scholar
  17. 17.
    Salz, U., Mucke, A., Zimmermann, J., Tay, F.R., Pashley, D.H.: pKa value and buffering capacity of acidic monomers commonly used in self-etching primers. J. Adhes. Dent. 8, 143–150 (2006)PubMedGoogle Scholar
  18. 18.
    Chan, K.M., Tay, F.R., King, N.M., Imazato, S., Pashley, D.H.: Bonding of mild self-etching primers/adhesives to dentin with thick smear layers. Am. J. Dent. 16, 340–346 (2003)Google Scholar
  19. 19.
    Yoshida, Y., Nagakane, K., Fukuda, R., Nakayama, Y., Okazaki, M., Shintani, H., Inoue, S., Tagawa, Y., Suzuki, K., De Munck, J., Van Meerbeek, B.: Comparative study on adhesive performance of functional monomers. J. Dent. Res. 83(6), 454–458 (2004)CrossRefPubMedGoogle Scholar
  20. 20.
    Yoshihara, K., Yoshida, Y., Nagaoka, N., Fukegawa, D., Hayakawa, S., Mine, A., Nakamura, M., Minagi, S., Osaka, A., Suzuki, K., Van Meerbeek, B.: Nano-controlled molecular interaction at adhesive interfaces for hard tissue reconstruction. Acta Biomater. 6(9), 3573–3582 (2010)CrossRefPubMedGoogle Scholar
  21. 21.
    Oguri, M., Yoshida, Y., Yoshihara, K., Miyauchi, T., Nakamura, Y., Shimoda, S., Hanabusa, M., Momoi, Y., Van Meerbeek, B.: Effects of functional monomers and photo-initiators on the degree of conversion of a dental adhesive. Acta Biomater. 8(5), 1928–1934 (2012)CrossRefPubMedGoogle Scholar
  22. 22.
    Sideridou, I.D., Achilias, D.S., Karava, O.: Reactivity of benzoyl peroxide/amine system as an initiator for the free radical polymerization of dental and orthopaedic dimethacrylate monomers: effect of the amine and monomer chemical structure. Macromolecules 39, 2072–2080 (2006)CrossRefGoogle Scholar
  23. 23.
    Kwon, T.Y., Bagheri, R., Kim, Y.K., Kim, K.H., Burrow, M.F.: Cure mechanisms in materials for use in esthetic dentistry. J. Invest. Clin. Dent. 3(1), 3–16 (2012)CrossRefGoogle Scholar
  24. 24.
    Jakubiak, J., Allonas, X., Fouassier, J.P., Sionkowska, A., Andrzejewska, E., Linden, L.A., Rabek, J.F.: Camphorquinone-amines photoinitiating systems for the initiation of free radical polymerization. Polymer 44, 5219–5226 (2003)CrossRefGoogle Scholar
  25. 25.
    Yu, Q., Nauman, S., Santerre, J.P., Zhu, S.: UV photopolymerization behavior of dimethacrylate oligomers with camphorquinone/amine initiator system. J. Appl. Polym. Sci. 82, 1107–1117 (2001)CrossRefGoogle Scholar
  26. 26.
    Watts, D.C.: Reaction kinetics and mechanics in photo-polymerised networks. Dent. Mater. 21(1), 27–35 (2005)CrossRefPubMedGoogle Scholar
  27. 27.
    Jandt, K.D., Mills, R.W.: A brief history of LED photopolymerization. Dent. Mater. 29(6), 605–617 (2013)CrossRefPubMedGoogle Scholar
  28. 28.
    Rueggeberg, F.A.: State-of-the-art: dental photocuring–a review. Dent. Mater. 27(1), 39–52 (2011)CrossRefPubMedGoogle Scholar
  29. 29.
    Fano, V., Shatel, M., Tanzi, M.L.: Release phenomena and toxicity in polymer-based dental restorative materials. Acta Biomed. 78(3), 190–197 (2007)PubMedGoogle Scholar
  30. 30.
    Mallineni, S.K., Nuvvula, S., Matinlinna, J.P., Yiu, C.K., King, N.M.: Biocompatibility of various dental materials in contemporary dentistry: a narrative insight. J. Invest.Clin. Dent. 4(1), 9–19 (2013)CrossRefGoogle Scholar
  31. 31.
    Söderholm, K.J., Mariotti, A.: BIS-GMA–based resins in dentistry: are they safe? J. Am. Dent. Assoc. 130(2), 201–209 (1999)CrossRefPubMedGoogle Scholar
  32. 32.
    Schweikl, H., Spagnuolo, G., Schmalz, G.: Genetic and cellular toxicology of dental resin monomers. J. Dent. Res. 85(10), 870–877 (2006). ReviewCrossRefPubMedGoogle Scholar
  33. 33.
    Schweikl, H., Hartmann, A., Hiller, K.A., Spagnuolo, G., Bolay, C., Brockhoff, G., Schmalz, G.: Inhibition of TEGDMA and HEMA-induced genotoxicity and cell cycle arrest by N-acetylcysteine. Dent. Mater. 23(6), 688–695 (2007)CrossRefPubMedGoogle Scholar
  34. 34.
    Ferracane, J.L.: Resin-based composite performance: are there some things we can’t predict? Dent. Mater. 29(1), 51–58 (2013)CrossRefPubMedGoogle Scholar
  35. 35.
    Geurtsen, W., Spahl, W., Muller, K., Leyhausen, G.: Aqueous extracts from dentin adhesives contain cytotoxic chemicals. J. Biomed. Mater. Res. 48, 772–777 (1999)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Center for Innovative Clinical MedicineOkayama University HospitalOkayamaJapan
  2. 2.Department of Biomaterials and Bioengineering, Faculty of Dental MedicineHokkaido UniversitySapporo, HokkaidoJapan

Personalised recommendations