Advertisement

Clinical Diagnostic Imaging

  • Masayuki YokoyamaEmail author
  • Kouichi Shiraishi
Chapter

Abstract

In this section, we describe clinical imaging technologies with a focus of targeting methodology and photochemical imaging modality. First, we discuss the targeting methodology for imaging diagnosis by comparing drug targeting methodology for therapies, and then, we explain characteristic features of the photochemical imaging modality by comparing those of other imaging modalities. In the middle part, we explain several carrier systems for imaging contrast agents; dendrimers, liposomes, polymeric micelles, and metal nanoparticles. In the last part, we classify optical imaging agents into four categories on the basis of their diagnostic and therapeutic functions, and introduce recent technical and clinical developments of photochemical imaging.

Keywords

Contrast agent Image diagnosis Optical imaging Carriers used for imaging diagnosis 

References

  1. 1.
    Yokoyama, M., Okano, T.: Targetable drug carriers: present status and a future perspective. Adv. Drug Deliv. Rev. 21, 77 (1996)CrossRefGoogle Scholar
  2. 2.
    Sugiyama, Y.: Importance of pharmacokinetic considerations in the development of drug delivery systems. Adv. Drug. Deliv. Rev. 19, 333 (1996)CrossRefGoogle Scholar
  3. 3.
    Maeda, H.: SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy. Adv. Drug Deliv. Rev. 46(1–3), 169–185 (2001)PubMedCrossRefGoogle Scholar
  4. 4.
    Kroon, J., Metselaar, J.M., Storm, G., van der Pluijm, G.: Liposomal nanomedicines in the treatment of prostate cancer. Cancer Treat Rev (in print)Google Scholar
  5. 5.
    Cao, H., Yamamoto, K., Yang, L.X., Weber, R.: Brentuximab vedotin: first-line agent for advanced Hodgkin lymphoma. Anticancer Res. 33(9), 3879–3885 (2013)PubMedGoogle Scholar
  6. 6.
    Beck, A., Reichert, J.M.: Antibody-drug conjugates: present and future. MAbs 6(1), 15–17 (2014)PubMedCrossRefGoogle Scholar
  7. 7.
    Gupta, N., Hatoum, H., Dy, G.K.: First line treatment of advanced non-small-cell lung cancer—specific focus on albumin bound paclitaxel. Int. J. Nanomed. 9, 209–221 (2014)Google Scholar
  8. 8.
    Welslau, M., Diéras, V., Sohn, J.H., Hurvitz, S.A., Lalla, D., Fang, L., Althaus, B., Guardino, E., Miles, D.: Patient-reported outcomes from EMILIA, a randomized phase 3 study of trastuzumab emtansine (T-DM1) versus capecitabine and lapatinib in human epidermal growth factor receptor 2-positive locally advanced or metastatic breast cancer. Cancer (in print)Google Scholar
  9. 9.
    Zhao, S., Wu, J., Wang, C., Liu, H., Dong, X., Shi, C., Shi, C., Liu, Y., Teng, L., Han, D., Chen, X., Yang, G., Wang, L., Shen, C., Li, H.: Intraoperative fluorescence-guided resection of high-grade malignant gliomas using 5-aminolevulinic acid-induced porphyrins: a systematic review and meta-analysis of prospective studies. PLoS ONE 8(5), e63682 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Zech, C.J., Herrmann, K.A., Reiser, M.F., Schoenberg, S.O.: MR imaging in patients with suspected liver metastases: value of liver-specific contrast agent Gd-EOB-DTPA. Magn. Reson. Med. Sci. 6(1), 43–52 (2007)PubMedCrossRefGoogle Scholar
  11. 11.
    Chen, X.S.: Introducing theranostics journal—from the editor-in-chief. Theranostics 1, 1–2 (2011)PubMedCrossRefGoogle Scholar
  12. 12.
    Lammers, T., Aime, S., Hennink, W.E., Storm, G., Kiessling, F.: Theranostic nanomedicines. Acc. Chem. Res. 18;44(10), 1029–1038 (2011)PubMedCrossRefGoogle Scholar
  13. 13.
    Gillies, E.R., Frechet, J.M.J.: Dendrimers and dendritic polymers in drug delivery. Drug Discov. Today 10(1), 35–43 (2005)PubMedCrossRefGoogle Scholar
  14. 14.
    Lee, C.C., MacKay, J.A., Fréchet, J.M.J., Szoka, F.C.: Designing dendrimers for biological applications. Nature Biotechnol. 23(12), 1517–1526 (2005)PubMedCrossRefGoogle Scholar
  15. 15.
    Guillaudeu, S.J., Fox, M.E., Haidar, Y.M., Dy, E.E., Szoka, F.C., Fréchet, J.M.J.: PEGylated dendrimers with core functionality for biological applications. Bioconjugate Chem. 19, 461–469 (2008)PubMedCrossRefGoogle Scholar
  16. 16.
    Svenson, S., Tomalia, D.A.: Dendrimers in biomedical applications—reflections on the field. Adv. Drug Deliv. Rev. 64, 102–115 (2012)CrossRefGoogle Scholar
  17. 17.
    Bosman, A.W., Janssen, H.M., Meijer, E.W.: About dendrimers: structure, physical properties, and applications. Chem. Rev. 99, 1665–1688 (1999)PubMedCrossRefGoogle Scholar
  18. 18.
    Kobayashi, H., Kawamoto, S., Jo, S.-K., Bryant Jr., H.L., Brechbiel, M.W., Star, R.A.: Macromolecular MRI contrast agents with small dendrimers: pharmacokinetic differences between sizes and cores. Bioconjugate Chem. 14, 388–394 (2003)PubMedCrossRefGoogle Scholar
  19. 19.
    Kobayashi H., Brechbiel, M.W.: Dendrimer-based macromolecular MRI contrast agents: characteristics and application. Mole. Imaging 2, 1–10 (2003)PubMedCrossRefGoogle Scholar
  20. 20.
    Ideta, R., Tasaka, F., Jang, W.-D., Nishiyama, N., Zhang, G.-D., Harada, A., Yanagi, Y., Tamaki, Y., Aida, T., Kataoka, K.: Nanotechnology-based photodynamic therapy for neovascular disease using a supramolecular nanocarrier loaded with a dendritic photosensitizer. Nano Lett. 5, 2426–2431 (2005)PubMedCrossRefGoogle Scholar
  21. 21.
    Klibanov, A.L., Maruyama, K., Torchilin, V.P., Huang, L.: Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett. 268, 235–237 (1990)PubMedCrossRefGoogle Scholar
  22. 22.
    Allen, T.M., Hansen, C.: Pharmacokinetics of stealth versus conventional liposomes: effect of dose. Biochim. Biophys. Acta 1991, 133–141 (1068)Google Scholar
  23. 23.
    Allen, T.M., Hansen, C., Martin, F., Redemann, C., Yau-Young, A.: Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo. Biochim. Biophys. Acta 1991, 29–36 (1066)Google Scholar
  24. 24.
    Lasic, D.D., Martin, F.J., Gabizon, A., Huang, S.K., Papahadjopoulos, D.: Sterically stabilized liposomes: a hypothesis on the molecular origin of the extended circulation times. Biochim. Biophys. Acta 1991, 187–192 (1070)Google Scholar
  25. 25.
    Torchilin, V.P., Omelyanenko, V.G., Papisov, M.I., Bogdanov Jr., A.A., Trubetskoy, V.S., Herron, J.N., Gentry, C.A.: Poly(ethylene glycol) on the liposome surface: on the mechanism of polymer-coated liposome longevity. Biochim. Biophys. Acta 1195, 11–20 (1994)PubMedCrossRefGoogle Scholar
  26. 26.
    Torchilin, V.P.: Recent advances with liposomes as pharmaceutical carriers. Nature Rev. 4, 145–160 (2005)Google Scholar
  27. 27.
    Al-Jamal, W.T., Kostarelos, K.: Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Acc. Chem. Res. 44, 1094–1104 (2011)PubMedCrossRefGoogle Scholar
  28. 28.
    Matsumura, Y., Maeda, H.: A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent Smancs. Cancer Res. 46, 6387–6392 (1986)PubMedGoogle Scholar
  29. 29.
    Jokerst, J.V., Gambhir, S.S.: Molecular imaging with theranostic nanoparticles. Acc. Chem. Res. 44, 1050–1060 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Bardhan, R., Lal, S., Joshi, A., Halas, N.J.: Theranostic nanoshells: from probe design to imaging and treatment of cancer. Acc. Chem. Res. 44, 936–946 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Koo, H., Huh,M.S., Sun, I.-C., Yuk, S.H., Choi, K., Kim, K., Kwon, I.C.: In vivo targeted delivery of nanoparticles for theranosis. Acc. Chem. Res. 44, 1018–1028 (2011)PubMedCrossRefGoogle Scholar
  32. 32.
    Sofou, S.: Radionuclide carriers for targeting of cancer. Int. J. Nanomedicine 3, 181–199 (2008)Google Scholar
  33. 33.
    Hong, H., Zhang, Y., Sun, J., Cai, W.: Molecular imaging and therapy of cancer with radiolabeled nanoparticles. Nano Today 4, 399–413 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Yokoyama, M., Okano, T., Sakurai, Y., Fukushima, S., Okamoto, K., Kataoka, K.: Selective delivery of adriamycin to a solid tumor using a polymeric micelle carrier system. J. Drug Target. 7, 171–186 (1999)PubMedCrossRefGoogle Scholar
  35. 35.
    Aliabadi, H.M., Lavasanifar, A.: Polymeric micelles for drug delivery. Expert Opin. Drug Deliv. 3, 130–162 (2006)CrossRefGoogle Scholar
  36. 36.
    Yokoyama, M., Okano, T., Sakurai, Y., Ekimoto, H., Shibazaki, C., Kataoka, K.: Toxicity and antitumor activity against solid tumors of micelle-forming polymeric anticancer drug and its extremely long circulation in blood. Cancer Res. 51, 3229–3236 (1991)PubMedGoogle Scholar
  37. 37.
    Yokoyama, M., Miyauchi, M., Yamada, N., Okano, T., Sakurai, Y., Kataoka, K.: Characterization and antitumor activity of the micelle forming polymeric anticancer drug adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer. Cancer Res. 50, 1693–1700 (1999)Google Scholar
  38. 38.
    Shiraishi, K., Kawano, K., Minowa, T., Maitani, Y., Yokoyama, M.: Preparation and in vivo imaging of PEG-poly(l-lysine)-based polymeric micelle MRI contrast agents. J. Control. Release 136, 14–20 (2009)PubMedCrossRefGoogle Scholar
  39. 39.
    Shiraishi, K., Kawano, K., Maitani, Y., Yokoyama, M.: Polyion complex micelle MRI contrast agents from poly(ethylene glycol)-b-poly(l-lysine) block copolymers having Gd-DOTA; preparations and their control of T1-relaxivities and blood circulation characteristics. J. Control. Release 148, 160–167 (2010)PubMedCrossRefGoogle Scholar
  40. 40.
    Michalet, X., Pinaud, F.F., Bentolila, L.A., Tsay, J.M., Doose, S., Li, J.J., Sundaresan, G., Wu, A.M., Gambhir, S.S., Weiss, S.: Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 307, 538–544 (2005)PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Gao, X., Cui, Y., Levenson, R.M., Chung, L.W.K., Nie, S.: In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22, 969–976 (2004)PubMedCrossRefGoogle Scholar
  42. 42.
    Alivisatos, P.: The use of nanocrystals in biological detection. Nat. Biotechnol. 22, 47–52 (2004)CrossRefGoogle Scholar
  43. 43.
    Pathak, S., Choi, S.K., Arnheim, N., Thompson, M.E.: Hydroxylated quantum dots as luminescent probes for in situ hybridization. J. Am. Chem. Soc. 123, 4103–4104 (2001)PubMedCrossRefGoogle Scholar
  44. 44.
    Kim, S., Bawend, M.G.: Oligomeric ligands for luminescent and stable nanocrystal quantum dots. J. Am. Chem. Soc. 125, 14652–14653 (2003)PubMedCrossRefGoogle Scholar
  45. 45.
    Guo, W., Li, J.J., Wang, Y.A., Peng, X.: Conjugation chemistry and bioapplications of semiconductor box nanocrystals prepared via dendrimer bridging. Chem. Mater. 15, 3125–3133 (2003)CrossRefGoogle Scholar
  46. 46.
    Pinaud, F., King, D., Moore, H.-P., Weiss, S.: Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptidesdendrimer. J. Am. Chem. Soc. 126, 6115–6123 (2004)PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Wu, X.Y., et al.: Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor QDs. Nat. Biotechnol. 21, 41–46 (2003)PubMedCrossRefGoogle Scholar
  48. 48.
    Bruchez Jr., M., Moronne, M., Gin, P., Weiss, S., Paul Alivisatos, A.: Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998)CrossRefGoogle Scholar
  49. 49.
    Dubertret, B., Skourides, P., Norris Vincent Noireaux, D.J., Brivanlou, A.H., Libchabe, A.: In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298, 1759–1762 (2002)PubMedCrossRefGoogle Scholar
  50. 50.
    van Schooneveld, M.M., Vucic, E., Koole, R., Zhou, Y., Stocks, J., Cormode, D.P., Tang, C.Y., Gordon, R.E., Nicolay, K., Meijerink, A., Fayad, Z.A., Mulder, W.J.: improved biocompatibility and pharmacokinetics of silica nanoparticles by means of a lipid coating: a multimodality investigation. Nano Lett. 8, 2517–2525 (2008)PubMedCrossRefGoogle Scholar
  51. 51.
    Selvan, S.T., Tan, T.T.Y., Yi, D.K., Jana, N.R.: Functional and multifunctional nanoparticles for bioimaging and biosensing. Langmuir 26, 11631–11641 (2010)PubMedCrossRefGoogle Scholar
  52. 52.
    Pons, T., Pic, E., Lequeux, N., Cassette, E., Bezdetnaya, L., Guillemin, F., Marchal, F., Dubertret, B.: Cadmium-free CuInS2/ZnS quantum dots for sentinel lymph node imaging with reduced toxicity. ACS Nano 4, 2531–2538 (2010)PubMedCrossRefGoogle Scholar
  53. 53.
    Lee, J.E., Lee, N., Kim, T., Kim, J., Hyeon, T.: Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. Acc. Chem. Res. 44, 893–902 (2011)PubMedCrossRefGoogle Scholar
  54. 54.
    Wang, K., He, X., Yang, X., Shi, H.: Functionalized silica nanoparticles: a platform for fluorescence imaging at the cell and small animal levels. Acc. Chem. Res. 46, 1367–1376 (2013)PubMedCrossRefGoogle Scholar
  55. 55.
    Tarn, D., Ashley, C.E., Xue, M., Carnes, E.C., Zink, J.I., Jeffrey Brinker, C.: Mesoporous silica nanoparticle nanocarriers: biofunctionality and biocompatibility. Acc. Chem. Res. 46, 792–801 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Benezra, M., Penate-Medina,O., Zanzonico, P.B., Schaer, D., Ow, H., Burns, A., DeStanchina, E., Longo, V., Herz, E., Iyer, S., Wolchok, J., Larson, S.M., Wiesner, U., Bradbury, M.S.: Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J. Clin Invest. 121, 2768–2780 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    He, X., Nie, H., Wang, K., Tan, W., Wu, X., Zhang, P.: In vivo study of biodistribution and urinary excretion of surface-modified silica nanoparticles. Anal. Chem. 80, 9597–9603 (2008)PubMedCrossRefGoogle Scholar
  58. 58.
    Murphy, C.J., Gole, A.M., Stone, O.W., Sisco, P.N., Alkilany, A.M., Goldsimith, E.C., Baxter, S.C.: Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc. Chem. Res. 41, 1721–1730 (2008)PubMedCrossRefGoogle Scholar
  59. 59.
    Xia, Y., Li, W., Cobley, C.M., Chen, J., Xia, X., Zhang, Q., Yang, M., Cho, E.C., Brown, P.K.: Gold nanocages: from synthesis to theranostic applications. Acc. Chem. Res. 44, 914–924 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Alkilany, A.M., Lohse, S.E., Murphy, C.J.: The gold standard: gold nanoparticle libraries to understand the nano-bio interface. Acc. Chem. Res. 46, 650–651 (2013)PubMedCrossRefGoogle Scholar
  61. 61.
    Moore, A., Marecos, E., Bogdanov Jr., A., Weissleder, R.: Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model. Radiology 214, 568–574 (2000)PubMedCrossRefGoogle Scholar
  62. 62.
    Tassa, C., Shaw, S.Y., Wesslder, R.: Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics, and therapy. Acc. Chem. Res. 44, 842–852 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Chen, T.-J., Cheng, T.-H., Chen, C.-Y., Hsu, S.C.N., Cheng, T.-L., Liu, G.-C., Wang, Y.-M.: Targeted herceptin–dextran iron oxide nanoparticles for noninvasive imaging of HER2/neu receptors using MRI. J. Biol. Inorg. Chem. 14, 253–260 (2009)PubMedCrossRefGoogle Scholar
  64. 64.
    Vinegoni, C., Botnaru, I., Aikawa, E., Calfon, M.A., Iwamoto, Y., Folco, E.J., Ntziachristos, V., Weissleder, R., Libby, P., Jaffer, F.A.: Indocyanine green enables near-infrared fluorescence imaging of lipid-rich, inflamed atherosclerotic plaques. Sci. Transl. Med. 3, 1–9 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Troyan, S.L., Kianzad, V., Gibbs-Strauss, S.L., Gioux, S., Matsui, A., Oketokoun, R., Ngo, L., Khamene, A., Azar, F., Frangioni, J.V.: The FLARE intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in breast cancer sentinel lymph node mapping. Ann Surg Oncol. 16, 2943–2952 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Hirche, C., Murawa, D., Mohr, Z., Kneif, S., Hunerbein, M.: ICG fluorescence-guided sentinel node biopsy for axillary nodal staging in breast cancer. Breast Cancer Res. Treat. 121, 373–378 (2010)PubMedCrossRefGoogle Scholar
  67. 67.
    Mahmood, U., Weissleder, R.: Near-infrared optical imaging of proteases in cancer. Mol. Cancer Ther. 2, 489–496 (2003)PubMedGoogle Scholar
  68. 68.
    Lee, S., Ryu, J.H., Park, K., Lee, A., Lee, S.-Y., Youn, I.-C., Ahn, C.-H., Yoon, S.M., Myung, S.-J., Moon, D.H., Chen, X., Choi, K., Kwon, I.C., Kim, K.: Polymeric nanoparticle-based activatable near-infrared nanosensor for protease determination in vivo. Nano Lett. 9, 4412–4416 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Wunderbaldinger, P., Turetschek, K., Bremer, C.: Near-infrared fluorescence imaging of lymph nodes using a new enzyme sensing activatable macromolecular optical probe. Eur. Radiol. 13, 2206–2211 (2003)PubMedCrossRefGoogle Scholar
  70. 70.
    Jiang, T., Olson, E.S., Nguyen, Q.T., Roy, M., Jennings, P.A., Tsien, R.Y.: Tumor imaging by means of proteolytic activation of cell-penetrating peptides. Proc Natl Acad Sci U S A 101, 17867–17872 (2004)PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Olsona, E.S., Jianga, T., Aguilera, T.A., Nguyen, Q.T., Ellies, L.G., Scadeng, M., Tsien, R.Y.: Activatable cell penetrating peptides linked to nanoparticles as dual probes for in vivo fluorescence and MR imaging of proteases. Proc. Natl. Acad. Sci. U S A 107, 4311–4316 (2010)CrossRefGoogle Scholar
  72. 72.
    Weinstain, R., Savariar, E.N., Felsen, C.N., Tsien, R.Y.: In vivo targeting of hydrogen peroxide by activatable cell-penetrating peptides. J. Am. Chem. Soc. 136, 874–877 (2014)PubMedCrossRefGoogle Scholar
  73. 73.
    Ogawa, M., Kosaka, N., Longmire, M.R., Urano, Y., Choyke, P.L., Kobayashi, H.: Fluorophore-quencher based activatable targeted optical probes for detecting in vivo cancer metastases. Mol. Pharm. 6(2), 386–395 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Backer, M.V., Levashova, Z., Patel, V., et al.: Molecular imaging of VEGF receptors in angiogenic vasculature with single-chain VEGF based probes. Nat. Med. 13, 504–509 (2007)PubMedCrossRefGoogle Scholar
  75. 75.
    Kovar, J.L., Volcheck, W.M., Chen, J., Simpson, M.A.: Purification method directly influences effectiveness of an epidermal growth factor coupled targeting agent for noninvasive tumor detection in mice. Anal. Biochem. 361, 47–54 (2007)PubMedCrossRefGoogle Scholar
  76. 76.
    Chen, K., Xie, J., Chen, X.: RGD-human serum albumin conjugates as efficient tumor targeting probes. Mol. Imaging 8, 65–73 (2009)PubMedCrossRefGoogle Scholar
  77. 77.
    Gleysteen, J.P., Duncan, R.D., Magnuson, J.S., Skipper, J.B., Zinn, K., Rosenthal, E.L.: Fluorescently labeled cetuximab to evaluate head and neck cancer response to treatment. Cancer Biol. Ther. 6, 1181–1185 (2007)PubMedCrossRefGoogle Scholar
  78. 78.
    Keereweer, S., Sterenborg, H.J.C.M., Kerrebijn, J.D.F., Van Driel, P.B.A.A., Baatenburg de Jong, R.J., Löwik, C.W.G.M.: Image-guided surgery in head and neck cancer: current practice and future directions of optical imaging. Head Neck 34, 120–126 (2012)CrossRefGoogle Scholar
  79. 79.
    Mieog, J.S.D., Troyan, S.L., Hutteman, M., Donohoe, K.J., van der Vorst, J.R., Stockdale, A., Liefers, G.-J., Choi, H.S., Gibbs-Strauss, S.L., Putter, H., Gioux, S., Kuppen, P.J.K., Ashitate, Y., Löwik, C.W.G.M., Smit, V.T.H.B.M., Oketokoun, R., Ngo, L.H., van de Velde, C.J.H., Frangioni, J.V., Vahrmeijer, A.L.: Toward optimization of imaging system and lymphatic tracer for near-infrared fluorescent sentinel lymph node mapping in breast cancer. Ann. Surg. Oncol. 18, 2483–2491 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Hirche, C., Murawa, D., Mohr, Z., Kneif, S., Hünerbein, M.: ICG fluorescence-guided sentinel node biopsy for axillary nodal staging in breast cancer. Breast Cancer Res. Treat 121, 373–378 (2010)PubMedCrossRefGoogle Scholar
  81. 81.
    Keereweer, S., Van Driel, P.B.A.A., Snoeks, T.J.A., Kerrebijn, J.D.F., Baatenburg de Jong, R.J., Vahrmeijer, A.L., Sterenborg, H.J.C.M., Löwik, C.W.G.M.: Optical image-guided cancer surgery: challenges and limitations. Clin. Cancer Res. 19, OF1–OF10 (2013)PubMedCrossRefGoogle Scholar
  82. 82.
    Luke, G.P., Yeager, D., Emelianov, S.Y.: Biomedical applications of photoacoustic imaging with exogenous contrast agents. Ann. Biomed. Eng. 40, 422–437 (2012)PubMedCrossRefGoogle Scholar
  83. 83.
    Wilson, K., Homan, K., Emelianov, S.: Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging. Nat. Commun. 3, 618 (2012)Google Scholar
  84. 84.
    Wang, L.V., Hu, S.: Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335, 1458–1462 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Park, J.-H., von Maltzahn, G., Xu, M.J., Fogal, V., Kotamraju, V.R., Ruoslahti, E., Bhatia, S.N., Sailor, M.J.: Cooperative nanomaterial system to sensitize, target, and treat tumors. Proc. Natl. Acad. Sci. U S A 107, 981–986CrossRefGoogle Scholar
  86. 86.
    Jokerst, J.V., Cole, A.J., Van de Sompel, D., Gambhir, S.S.: Gold nanorods for ovarian cancer detection with photoacoustic imaging and resection guidance via Raman imaging in living mice. ACS Nano 6, 10366–10377 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Jokerst, J.V., Thangaraj, M., Kempen, P.J., Sinclair, R., Gambhir, S.S.: Photoacoustic imaging of mesenchymal stem cells in living mice via silica-coated gold nanorods. ACS Nano 6, 5920–5930 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Hering, K., Cialla, D., Ackermann, K., Dörfer, T., Möller, R., Schneidewind, H., Mattheis, R., Fritzsche, W., Rösch, P., Popp, J.: SERS: a versatile tool in chemical and biochemical diagnostics. Anal. Bioanal. Chem. 390, 113–124 (2008)PubMedCrossRefGoogle Scholar
  89. 89.
    Cialla, D., März, A., Böhme, R., Theil, F., Weber, K., Schmitt, M., Popp, J.: Surface-enhanced Raman spectroscopy (SERS): progress and trends. Anal. Bioanal. Chem. 403, 27–54 (2012)PubMedCrossRefGoogle Scholar
  90. 90.
    von Maltzahn, G., Centrone, A., Park, J.-H., Ramanathan, R., Sailor, M.J., Alan Hatton, T., Bhatia, S.N.: SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating. Adv. Mater. 21, 3175–3180 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Park, J.-H., von Maltzahn, G., Ong, L.L., Centrone, A., Alan Hatton, T., Ruoslahti, E., Bhatia, S.N., Sailor, M.J.: Cooperative nanoparticles for tumor detection and photothermally triggered drug delivery. Adv. Mater. 22, 880–885 (2010)PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Samanta, A., Maiti, K.K., Soh, K.-S., Liao, X., Vendrell, M., Dinish, U.S., Yun, S.-W., Bhuvaneswari, R., Kim, H., Rautela, S., Chung, J., Olivo, M., Chang, Y.-T.: Ultrasensitive near-infrared raman reporters for SERS-based in vivo cancer detection. Angew. Chem. Int. Ed. 50, 6089–6092 (2011)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Division of Medical EngineeringThe Jikei University School of MedicineChibaJapan

Personalised recommendations