• Koji SugiokaEmail author
  • Takehisa Matsuda
  • Yoshihiro Ito


Photofabrication allows us to create spatio-resolved two-dimensional (2D) and three-dimensional (3D) architectural features. The photoinduced process based on photochemical, photophysical, and/or photothermal effects offers ease of reaction control and high capability of region-specific addressability, dimensional precision or spatio-resolution, and topological control. The biological surface engineering via the photoinduced process enables controlling biological reactivity for including cell adhesiveness/non-adhesiveness, blood compatibility, and tissue compatibility at the desired local region, which benefits implantable medical devices such as artificial graft and heart. Depending on the process, the photofabrication can provide three different schemes including subtractive, undeformative, and additive processing to prepare diverse structures from micro- to macroscale. Additionally, distinct feature of photofabrication relying on the specific light source can extend the fabrication geometry from a plane to a volume to create 3D structures. Applications of the 3D structures created include preparation of medical and tissue engineering devices, human organ models for preoperative simulations, a customized, bioresorbable tracheal splint for treatment of tracheobronchomalacia, 3D printing of proteins, and fabrication of functional biochips.


Micropatterning Surface modification Ablation Nanostructuring 3D fabrication 


  1. 1.
    Hao, L., Lawrence, J., Li, L.: The wettability modification of bio-grade stainless steel in contact with simulated physiological liquids by the means of laser irradiation. Appl. Surf. Sci. 247, 453–457 (2004)CrossRefGoogle Scholar
  2. 2.
    Mitchell, S.A., Poulsson, A.H.C., Davidson, M.R., Emmison, N., Shard, A.G., Bradley, R.H.: Cellular attachment and spatial control of cells using micro-patterned ultra-violet/ozone treatment in serum enriched media. Biomaterials 25, 4079–4086 (2004)CrossRefPubMedGoogle Scholar
  3. 3.
    Braga, F.J.C., Marques, R.F.C., Filho, E.D.A., Guastaldi, A.C.: Surface modification of Ti dental implants by Nd: YVO4 laser irradiation. Appl. Surf. Sci. 253, 9203–9208 (2007)CrossRefGoogle Scholar
  4. 4.
    Chen, A.A., Tsang, V.L., Albrecht, D.R., Bhatia, S.N.: 3-D Fabrication technology for tissue engineering. In: Ferrari, M., Dessai, T., Bhatia, S.N. (eds.) BioMEMS and Biomedical Nanotechnology Volume III: Therapeutic Micro/Nanotechnology, vol. XXIV, pp. 23–38. Springer, Berlin (2007a)CrossRefGoogle Scholar
  5. 5.
    Chen, G., Kawazoe, N., Fan, Y., Ito, Y., Tateishi, T.: Grid pattern of nanothick microgel network. Langmuir 23, 5864–5867 (2007b)CrossRefPubMedGoogle Scholar
  6. 6.
    Chen, Q., Wu, D., Niu, L.G., Wang, J., Lin, X.F., Xia, H., Sun, H.B.: Phase lenses and mirrors created by laser micronanofabrication via two-photon photopolymerization. Appl. Phys. Lett. 91, 171105 (2007c)CrossRefGoogle Scholar
  7. 7.
    Yang, W., Yang, W.: Surface chemoselective phototransformation of C-H bonds on organic polymeric materials and related high-tech applications. Chem. Rev. 113, 5547–5594 (2013)CrossRefPubMedGoogle Scholar
  8. 8.
    Ito, Y., Hasuda, H., Sakuragi, M., Tsuzuki, S.: Surface modification of plastic, glass and titanium by photoimmobilization of polyethylene glycol for antibiofouling. Acta Biomater. 3, 1024–1032 (2007)CrossRefPubMedGoogle Scholar
  9. 9.
    Kitajima, T., Obuse, S., Adachi, T., Tomita, M., Ito, Y.: Recombinant human gelatin substitute with photoreactive properties for cell culture and tissue engineering. Biotechnol. Bioeng. 1008, 2468–2476 (2011)CrossRefGoogle Scholar
  10. 10.
    Deng, J., Wang, L., Liu, L., Yang, W.: Development and new applications of UV-induced surface graft polymerization. Prog. Polym. Sci. 34, 156–193 (2009)CrossRefGoogle Scholar
  11. 11.
    Ziani-Cherif, H., Abe, Y., Imachi, K., Matsuda, T.: Dynamically tunable protein microlenses. J. Biomed. Mater. Res. 59, 386–389 (2002)Google Scholar
  12. 12.
    Uchida, E., et al.: Dynamically tunable protein microlenses. J. Appl. Polym. Sci. 41, 386 (1990)Google Scholar
  13. 13.
    Yang, W., Ranby, B.: Radical Living graft polymerization on the surface of polymeric materials. Macromolecules 29, 3308–3310 (1996)CrossRefGoogle Scholar
  14. 14.
    Ma, Y., Liu, L., Yang, W.: Photo-induced living/controlled surface radical grafting polymerization and its application in fabricating 3-D micro-architectures on the surface of flat/particulate organic substrates. Polymer 52, 4159–4173 (2011)CrossRefGoogle Scholar
  15. 15.
    Matsuda, T., Kaneko, M., Ge, S.R.: Quasi-living surface graft polymerization with phosphorylcholine group(s) at the terminal end. Biomaterials 24, 4507–4515 (2003)CrossRefPubMedGoogle Scholar
  16. 16.
    Matsuda, T., Ohya, S.: Photoiniferter-based thermoresponsive graft architecture with albumin covalently fixed at growing graft chain end. Langmuir 21, 9660–9665 (2005)CrossRefPubMedGoogle Scholar
  17. 17.
    Chrisey, D.B., Pique, A., McGill, R.A., Horwitz, J.S., Ringeisen, B.R., Bubb, D.M., Wu, P.K.: Laser deposition of polymer and biomaterial films. Chem. Rev. 103, 553–576 (2003)CrossRefPubMedGoogle Scholar
  18. 18.
    Wu, P.K., Ringeisen, B.R., Krizman, D.B., Frondoza, C.G., Brooks, M., Bubb, D.M., Auyeung, R.C.Y., Pique, A., Spargo, B., McGill, R.A., Chrisey, D.B.: Laser transfer of biomaterials: matrix-assisted pulsed laser evaporation (MAPLE) and MAPLE Direct Write. Rev. Sci. Instrum. 74, 2546–2557 (2003)CrossRefGoogle Scholar
  19. 19.
    Chrisey, D.B., Hubler, G.K.: Pulsed laser deposition of thin films. Wiley, New York (1994)Google Scholar
  20. 20.
    Nelson, R.W., Thomas, R.M., Williams, P.: Time-of-flight mass-spectrometry of nucleic-acids by laser ablation and ionization from a frozen aqueous matrix. Rapid Commun. Mass. Spectrom. 4, 348–351 (1990)CrossRefGoogle Scholar
  21. 21.
    Ringeisen, B.R., Callahan, J., Wu, P.K., Pique, A., Spargo, B., McGill, R.A, Bucaro, M., Kim, H., Bubb, D.M., Chrise, D.B.: Novel laser-based deposition of active protein thin films. Langmuir 17, 3472–3479 (2001)CrossRefGoogle Scholar
  22. 22.
    Ringeisen, B.R., Chrisey, D.B., Pique, A., Young, H.D., Modi, R., Bucaro, M., Jones-Meehan, J., Spargo, B.J.: Generation of mesoscopic patterns of viable Escherichia coli by ambient laser transfer. Biomaterials 23, 161–166 (2002)CrossRefPubMedGoogle Scholar
  23. 23.
    Wu, P.K., Ringeisen, B.R., Callahan, J., Brooks, M., Bubb, D.M., Wu, H.D., Pique, A., Spargo, B., McGill, R.A., Chrisey, D.B.: The deposition, structure, pattern deposition, and activity of biomaterial thin-films by matrix-assisted pulsed-laser evaporation (MAPLE) and MAPLE direct write. Thin Solid Films 398, 607–614 (2001)CrossRefGoogle Scholar
  24. 24.
    Ringeisen, B.R., Wu, P.K., Kim, H., Pique, A., Auyeung, R.Y.C., Young, H.D., Chrisey, D.B., Krizman, D.B.: Picoliter-scale protein microarrays by laser direct write. Biotechnol. Prog. 18, 1126–1129 (2002)CrossRefPubMedGoogle Scholar
  25. 25.
    Ito, Y., Nogawa, M., Sugimura, H., Takai, O.: Photodegradation micropatterning of adsorbed collagen by vacuum ultraviolet light. Langmuir 20, 4299–4301 (2004)CrossRefPubMedGoogle Scholar
  26. 26.
    Ito, Y., Heydari, M., Hashimoto, A., Konno, T., Hirasawa, A., Hori, S., Kurita, K., Nakajima, A.: The movement of a water droplet on a gradient surface prepared by photodegradation. Langmuir 23, 1845–1850 (2007)CrossRefPubMedGoogle Scholar
  27. 27.
    Emmony, D.C., Howson, R.P., Willis, L.J.: Laser mirror damage in germanium at 10.6 μm. Appl. Phys. Lett. 23, 598–600 (1973)CrossRefGoogle Scholar
  28. 28.
    Jain, A.K., Kulkarni, V.N., Sood, D.K., Uppal, J.S.: Periodic surface ripples in laser-treated aluminum and their use to determine absorbed power. J. Appl. Phys. 52, 4882–4884 (1981)CrossRefGoogle Scholar
  29. 29.
    Sakabe, S., Hashida, M., Tokita, S., Namba, S., Okamuro, K.: Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse. Phys. Rev. B 79, 033409 (2009)CrossRefGoogle Scholar
  30. 30.
    Hashida, M., Fujita, M., Tsukamoto, M., Semerok, A.F., Gobert, O., Petite, G., Izawa, Y., Wagner, J.F.: Femtosecond laser ablation of metals: precise measurement and analytical model for crater profiles. Proc. SPIE 4830, 452–457 (2002)CrossRefGoogle Scholar
  31. 31.
    Yasumaru, N., Miyazaki, K., Kiuchi, J.: Femtosecond-laser-induced nanostructure formed on hard thin films of TiN and DLC. Appl. Phys. A 76, 983–985 (2003)CrossRefGoogle Scholar
  32. 32.
    Borowiec, A., Hauge, H.K.: Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses. Appl. Phys. Lett. 82, 4462–4464 (2003)CrossRefGoogle Scholar
  33. 33.
    Costache, F., Henyk, M., Reif, J.: Surface patterning on insulators upon femtosecond laser ablation. Appl. Surf. Sci. 208, 486–491 (2003)CrossRefGoogle Scholar
  34. 34.
    Shinonaga, T., Tsukamoto, M., Kawa, T., Chen, P., Nagai, A., Hanawa, T.: Formation of periodic nanostructures using a femtosecond laser to control cell spreading on titanium. Appl. Phys. B 119, 493–496 (2015)CrossRefGoogle Scholar
  35. 35.
    Kodama, H.: Automatic method for fabricating a threedimensional plastic model with photo hardening polymer. Rev. Sci. Instrum. 52, 1770–1773 (1981)CrossRefGoogle Scholar
  36. 36.
    Cooke, M.N., Fisher, J.P., Dean, D., Rimnac, C., Mikos, A.G.: Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth. J. Biomed. Mater. Res. B Appl. Biomater. 64, 65–69 (2003)CrossRefPubMedGoogle Scholar
  37. 37.
    Langton, C.M., Whitehead, M.A., Langton, D.K., Langley, G.: Development of a cancellous bone structural model by stereolithography for ultrasound characterisation of the calcaneus. Med. Eng. Phys. 19, 599–604 (1997)CrossRefPubMedGoogle Scholar
  38. 38.
    Sodian, R., Loebe, M., Hein, A., Martin, D.P., Hoerstrup, S.P., Potapov, E.V., Hausmann, H., Lueth, T., Hetzer, R.: Application of stereolithography for scaffold fabrication for tissue engineered heart valves. ASAIO J. 48, 12–16 (2002)CrossRefPubMedGoogle Scholar
  39. 39.
    Zopf, D.A., Hollister, S.J., Nelson, M.E., Ohye, R.G., Green, G.E.: Bioresorbable airway splint created with a three-dimensional printer. N. Engl. J. Med. 368, 2043–2045 (2013)CrossRefPubMedGoogle Scholar
  40. 40.
    Vaidya, M.: Startups tout commercially 3D-printed tissue for drug screening. Nature Med. 21, 2 (2015)CrossRefPubMedGoogle Scholar
  41. 41.
    Sugioka, K., Cheng, Y.: Ultrafast lasers—reliable tools for advanced materials processing. Light Sci. Appl. 3, e149 (2014)CrossRefGoogle Scholar
  42. 42.
    Sugioka, K., Cheng, Y.: Femtosecond laser three-dimensional micro- and nanofabrication. Appl. Phys. Rev. 1, 041303 (2014)CrossRefGoogle Scholar
  43. 43.
    Davis, K.M., Miura, K., Sugimoto, N., Hirao, K.: Writing waveguides in glass with a femtosecond laser. Opt. Lett. 21, 1729–1731 (1996)CrossRefPubMedGoogle Scholar
  44. 44.
    Osellame, R., Hoekstra, H.J.W.M., Cerullo, G., Pollnau, M.: Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips. Laser Photon. Rev. 5, 442–463 (2011)CrossRefGoogle Scholar
  45. 45.
    Marcinkevičius, A., Juodkazis, S., Watanabe, M., Miwa, M., Matsuo, S., Misawa, H., Nishii, J.: Femtosecond laser-assisted threedimensional microfabrication in silica. Opt. Lett. 26, 277–279 (2001)CrossRefGoogle Scholar
  46. 46.
    Sugioka, K., Hanada, Y., Midorikawa, K.: Three-dimensional femtosecond laser micromachining of photosensitive glass for biomicrochips. Laser Photon. Rev. 3, 386–400 (2010)CrossRefGoogle Scholar
  47. 47.
    Li, Y., Itoh, K., Watanabe, W., Yamada, K., Kuroda, D., Nishii, J., Jiang, Y.Y.: Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses. Opt. Lett. 26, 1912–1914 (2001)CrossRefPubMedGoogle Scholar
  48. 48.
    Bellouard, Y., Said, A., Dugan, M., Bado, P.: Fabrication of high aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching. Opt. Express 12, 2120–2129 (2004)CrossRefPubMedGoogle Scholar
  49. 49.
    Choudhury, D., Ramsay, W.T., Kiss, R., Willoughby, N.A., Patersona, L., Kar, A.Y.: A 3D mammalian cell separator biochip. Lab Chip 12, 948–953 (2012)CrossRefPubMedGoogle Scholar
  50. 50.
    Kawata, S., Sun, H.B., Tanaka, T., Takada, K.: Finer features for functional microdevices—micromachines can be created with higher resolution using two-photon absorption. Nature 412, 697–698 (2001)CrossRefPubMedGoogle Scholar
  51. 51.
    Sun, H.B., Maeda, M., Takada, K., Chon, J.W.M., Gu, M., Kawata, S.: Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization. Appl. Phys. Lett. 83, 819–821 (2003)CrossRefGoogle Scholar
  52. 52.
    Seet, K.K., Mizeikis, V., Matsuo, S., Juodkazis, S., Misawa, H.: Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing. Adv. Mater. 17, 541 (2005)CrossRefGoogle Scholar
  53. 53.
    Maruo, S., Ikuta, K., Korogi, H.: Submicron manipulation tools driven by light in a liquid. Appl. Phys. Lett. 82, 133–135 (2003)CrossRefGoogle Scholar
  54. 54.
    Lim, T.W., Son, Y., Jeong, Y.J., Yang, D.Y., Kong, H.J., Lee, K.S., Kim, D.P.: Three-dimensionally crossing manifold micro-mixer for fast mixing in a short channel length. Lab Chip 11, 100–103 (2011)CrossRefPubMedGoogle Scholar
  55. 55.
    Farsari, M., Chichkov, B.: Two-photon fabrication. Nat. Photon. 3, 450–452 (2009)CrossRefGoogle Scholar
  56. 56.
    Tayalia, P., Mendonca, C.R., Baldacchini, T., Mooney, D.J., Mazur, E.: 3D Cell-migration studies using two-photon engineered polymer scaffolds. Adv. Mater. 20, 4494–4498 (2008)CrossRefGoogle Scholar
  57. 57.
    Ovsianikov, A., Malinauskas, M., Schlie, S., Chichkov, B., Gittard, S., Narayan, R., Lobler, M., Sternberg, K., Schmitz, K.P., Haverich, A.: Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications. Acta Biomater. 7, 967–974 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Wang, J., Xia, H., Xu, B.B., Niu, L.G., Wu, D., Chen, Q.D., Sun, H.B.: Remote manipulation of micronanomachines containing magnetic nanoparticles. Opt. Lett. 34, 581–583 (2009)CrossRefPubMedGoogle Scholar
  59. 59.
    Sun, Y.L., Dong, W.F., Yang, R.Z., Meng, X., Zhang, L., Chen, Q.D., Sun, H.B.: Dynamically tunable protein microlenses. Angew. Chem. Int. Ed. 51, 1558–1562 (2012)CrossRefPubMedGoogle Scholar
  60. 60.
    Sun, Y.L., Li, Q., Sun, S.M., Huang, J.C., Zheng, Y., Chen, Q.D., Shao, Z.Z., Sun, H.B.: Aqueous multiphoton lithography with multifunctional silk-centred bio-resists. Nature Commun. 6, 8612 (2015)Google Scholar
  61. 61.
    Crespi, A., Gu, Y., Ngamsom, B., Hoekstra, H.J., Dongre, C., Pollnau, M., Ramponi, R., van den Vlekkert, H.H., Watts, P., Cerullo, G., Osellame, R.: Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection. Lab Chip 10, 1167–1173 (2010)CrossRefPubMedGoogle Scholar
  62. 62.
    Wu, D., Niu, L., Wu, S., Xu, J., Midorikawa, K., Sugioka, K.: Ship-in-a-bottle femtosecond laser integration of optofluidic microlens arrays with center-pass units enabling coupling-free parallel cell counting with 100% success rate. Lab Chip 15, 1515–1523 (2015)CrossRefPubMedGoogle Scholar
  63. 63.
    Wu, D., Wu, S., Xu, J., Niu, L., Midorikawa, K., Sugioka, K.: Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip. Laser Photon. Rev. 8, 458–467 (2014)CrossRefGoogle Scholar
  64. 64.
    Wu, D., Xu, J., Niu, L., Wu, S., Midorikawa, K., Sugioka, K.: In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting. Light Sci. Appl. 4, e228 (2015)CrossRefGoogle Scholar
  65. 65.
    Cross Medical Service Co. Ltd.:
  66. 66.

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Koji Sugioka
    • 1
    Email author
  • Takehisa Matsuda
    • 2
  • Yoshihiro Ito
    • 3
    • 4
  1. 1.RIKEN Center for Advanced PhotonicsWakoJapan
  2. 2.Kyoto Institute of TechnologyKyotoJapan
  3. 3.Nano Medical Engineering Laboratory, RIKENWakoJapan
  4. 4.Emergent Bioengineering Materials Research TeamRIKEN Center for Emergent Matter ScienceWakoJapan

Personalised recommendations