Skip to main content

Photochemical Processed Materials

  • Chapter
  • First Online:
Photochemistry for Biomedical Applications

Abstract

This chapter describes photochemical processes of polymers including photopolymerization and photocrosslinkable polymerization. Photoinitiators are key components in photopolymerization that generate reactive species of free radicals or ions via Norrish type I or Norrish type II reactions. Visible-light photoinitiators are fascinating compounds, because visible-light curing is a challenging issue due to high demands in diverse applications such as dental restoration, reprography, and three-dimensional printing. Photo-iniferters are also attractive photoinitiators that yield high-reactive free radicals, leading to a living radical polymerization with narrow polydispersity. Photoreactive polymers including the photoinitiators have functional properties for biological applications, for example, the photo-induced micropatterned surfaces in synthetic polymers for immobilization of cells, and photo-cross-linking in biopolymers for tissue engineering. We also describe photolabile compounds, photodegradation of chemical structures, for development of a mild chemical approach for dealing with sensitive biomolecules against acids and bases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ifkovits, J.L., Burdick, J.A.: Photopolymerizable and degradable biomaterials for tissue engineering applications. Tissue Eng. 13, 2369–2385 (2007)

    Article  CAS  PubMed  Google Scholar 

  2. Mishra, M., Yagci, Y.: Handbook of Vinyl Polymers: Radical Polymerization, Process, and Technology, 2nd edn. CRC Press (2008)

    Google Scholar 

  3. Gruber, H.F.: Photoinitiators for free radical polymerization. Prog. Polym. Sci. 17, 953–1044 (1992)

    Article  CAS  Google Scholar 

  4. Turro, N.J., Ramamurthy, V., Scaiano, J.C.: Principles of Molecular Photochemistry: An Introduction. University Science Books (2009)

    Google Scholar 

  5. Lechtken, P.D.C.D., Buethe, I.D.C.D., Hesse, A.D.C.D.: Acylphosphinoxidverbindungen und ihre verwendung Acylphosphine oxide compounds and their use DE19782830927 (1980)

    Google Scholar 

  6. Terauchi, K., Sakurai, H.: Ultraviolet spectral studies in the esters of aroylphosphonic acids. Bull. Chem. Soc. Jpn 42, 821–823 (1969)

    Article  CAS  Google Scholar 

  7. Sumiyoshi, T., Schnabel, W.: On the reactivity of phosphonyl radicals towards olefinic compounds. Makromol. Chem. 186, 1811–1823 (1985)

    Article  CAS  Google Scholar 

  8. Monroe, B.M.: The photochemistry of α-dicarbonyl compounds. In: Advances in Photochemistry, pp. 77–108. Wiley, Inc. (1971)

    Chapter  Google Scholar 

  9. Pfannenstiel, H., Huebner, H.D.: Verfahren zur herstellung individueller gussteile DE19823240907 (1984)

    Google Scholar 

  10. Allen, N.S.: Photoinitiators for UV and visible curing of coatings: mechanisms and properties. J. Photochem. Photobiol. A: Chem. 100, 101–107 (1996)

    Article  CAS  Google Scholar 

  11. Jakubiak, J., Rabek, J.F.: Photoinitiators for visible light polymerization. Polimery 44, 447–461 (1999)

    CAS  Google Scholar 

  12. Gómez, M.L., Previtali, C.M., Montejano, H.A.: Two- and three-component visible light photoinitiating systems for radical polymerization based on onium salts: an overview of mechanistic and laser flash photolysis studies. Int. J. Photoenergy 9 (2012)

    Google Scholar 

  13. Bibaut-Renauld, C., Burget, D., Fouassier, J.P., Varelas, C.G., Thomatos, J., Tsagaropoulos, G., Ryrfors, L.O., Karlsson, O.J.: Use of α-diketones as visible photoinitiators for the photocrosslinking of waterborne latex paints. J. Polym. Sci., Part A: Polym. Chem. 40, 3171–3181 (2002)

    Article  CAS  Google Scholar 

  14. Jakubiak, J., Sionkowska, A., Lindén, L.Å., Rabek, J.F.: Isothermal photo differential scanning calorimetry. crosslinking polymerization of multifunctional monomers in presence of visible light photoinitiators. J. Therm. Anal. Calorim. 65, 435–443 (2001)

    Article  CAS  Google Scholar 

  15. Ghaemy, M., Bekhradnia, S.: Thermal and photocuring of an acrylate-based coating resin reinforced with nanosilica particles. J. Coat. Technol. Res. 9, 569–578 (2012)

    Article  CAS  Google Scholar 

  16. Angiolini, L., Caretti, D., Salatelli, E.: Synthesis and photoinitiation activity of radical polymeric photoinitiators bearing side-chain camphorquinone moieties. Macromol. Chem. Phys. 201, 2646–2653 (2000)

    Article  CAS  Google Scholar 

  17. Park, Y.J., Chae, K.H., Rawls, H.R.: Development of a new photoinitiation system for dental light-cure composite resins. Dent. Mater. 15, 120–127 (1999)

    Article  CAS  PubMed  Google Scholar 

  18. Arikawa, H., Takahashi, H., Kanie, T., Ban, S.: Effect of various visible light photoinitiators on the polymerization and color of light-activated resins. Dent. Mater. J. 28, 454–460 (2009)

    Article  CAS  PubMed  Google Scholar 

  19. Sun, G.J., Chae, K.H.: Properties of 2,3-Butanedione and 1-Phenyl-1,2-Propanedione as new photosensitizers for visible light cured dental resin composites. Polymer 41, 6205–6212 (2000)

    Article  CAS  Google Scholar 

  20. Ikemura, K., Endo, T.: A review of the development of radical photopolymerization initiators used for designing light-curing dental adhesives and resin composites. Dent. Mater. J. 29, 481–501 (2010)

    Article  CAS  PubMed  Google Scholar 

  21. Ganster, B., Fischer, U.K., Moszner, N., Liska, R.: New Photocleavable Structures, 4. Macromol. Rapid Commun. 29, 57–62 (2008)

    Article  CAS  Google Scholar 

  22. Ganster, B., Fischer, U.K., Moszner, N., Liska, R.: New photocleavable structures. diacylgermane-based photoinitiators for visible light curing. Macromolecules 41, 2394–2400 (2008)

    Article  CAS  Google Scholar 

  23. Rivarola, C.R., Biasutti, M.A., Barbero, C.A.: A visible light photoinitiator system to produce acrylamide based smart hydrogels: Ru(bpy)3 + 2 as photopolymerization initiator and molecular probe of hydrogel microenvironments. Polymer 50, 3145–3152 (2009)

    Article  CAS  Google Scholar 

  24. Gómez, M.L., Fasce, D.P., Williams, R.J.J., Erra-Balsells, R., Kaniz Fatema, M., Nonami, H.: Silsesquioxane functionalized with methacrylate and amine groups as a crosslinker/co-initiator for the synthesis of hydrogels by visible-light photopolymerization. Polymer 49, 3648–3653 (2008)

    Article  CAS  Google Scholar 

  25. Nie, J., Bowman, C.N.: Synthesis and photopolymerization of N, N′-Dimethyl,-N, N′-Di(methacryloxy ethyl)-1,6-Hexanediamine as a polymerizable amine coinitiator for dental restorations. Biomaterials 23, 1221–1226 (2002)

    Article  CAS  PubMed  Google Scholar 

  26. Tiba, A., Culbertson, B.M.: Development of visible light-cured multi-methacrylates for dental restorative materials. J. Macromol. Sci., Part A 36, 489–506 (1999)

    Article  Google Scholar 

  27. Anseth, K.S., Newman, S.M., Bowman, C.N.: Polymeric dental composites: properties and reaction behavior of multimethacrylate dental restorations. In: Peppas, N.A., Langer, R.S. (eds.) Biopolymers II, pp. 177–217. Springer, Berlin (1995)

    Chapter  Google Scholar 

  28. Crivello, J.V., Lam, J.H.W.: Diaryliodonium salts. A new class of photoinitiators for cationic polymerization. Macromolecules 10, 1307–1315 (1977)

    Article  CAS  Google Scholar 

  29. Horspool, W.M., Lenci, F.: CRC Handbook of Organic Photochemistry and Photobiology, vols. 1 & 2, 2nd edn. CRC Press (2003)

    Google Scholar 

  30. Crivello, J.V., Lam, J.H.W.: Complex triarylsulfonium salt photoinitiators. I. The Identification, characterization, and syntheses of a new class of triarylsulfonium salt photoinitiators. J. Polym. Sci. Polym. Chem. Ed. 18, 2677–2695 (1980)

    CAS  Google Scholar 

  31. Yagci, Y., Ledwith, A.: Mechanistic and kinetic studies on the photoinitiated polymerization of tetrahydrofuran. J. Polym. Sci., Part A: Polym. Chem. 26, 1911–1918 (1988)

    Article  CAS  Google Scholar 

  32. Yagci, Y., Lukáč, I., Schnabel, W.: Photosensitized cationic polymerization using N-Ethoxy-2-Methylpyridinium Hexafluorophosphate. Polymer 34, 1130–1133 (1993)

    Article  CAS  Google Scholar 

  33. Dossow, D., Qin Qin, Z., Hizal, G., Yagci, Y., Schnabel, W.: Photosensitized cationic polymerization of cyclohexene oxide: a mechanistic study concerning the use of pyridinium-type salts. Polymer 37, 2821–2826 (1996)

    Article  CAS  Google Scholar 

  34. Hizal, G., Yagci, Y., Schnabel, W.: Charge-transfer complexes of pyridinium ions and methyl- and methoxy-substituted benzenes as photoinitiators for the cationic polymerization of cyclohexene oxide and related compounds. Polymer 35, 2428–2431 (1994)

    Article  CAS  Google Scholar 

  35. Yagci, Y., Schnabel, W.: Light-induced cationic polymerization. Makromol. Chem. Makromol. Symp. 13–14, 161–174 (1988)

    Article  Google Scholar 

  36. Ahn, K.-D., Ihn, K.J., Kwon, I.C.: A photosensitive polymer having benzoin ether side chains: Poly(α-Methylolbenzoin Methyl Ether Acrylate). J. Macromol. Sci. Part A Chem. 23, 355–368 (1986)

    Article  Google Scholar 

  37. Hageman, H.J., Jansen, L.G.J.: Photoinitiators and photoinitiation, 9 photoinitiators for radical polymerization which counter oxygen-inhibition. Makromol. Chem. 189, 2781–2795 (1988)

    Article  CAS  Google Scholar 

  38. Böttcher, A., Hasebe, K., Hizal, G., Yaḡci, Y., Stellberg, P., Schnabel, W.: Initiation of cationic polymerization via oxidation of free radicals using pyridinium salts. Polymer 32, 2289–2293 (1991)

    Article  Google Scholar 

  39. Yagci, Y., Schnabel, W.: Acylphosphine oxides as free radical promoters in cationic polymerizations. Makromol. Chem. Rapid Commun. 8, 209–213 (1987)

    Article  CAS  Google Scholar 

  40. Yaḡci, Y., Borbely, J., Schnabel, W.: On the mechanism of acylphosphine oxide promoted cationic polymerization. Eur. Polym. J. 25, 129–131 (1989)

    Article  Google Scholar 

  41. Catilaz-Simonin, L., Fouassier, J.P.: Investigation of a system capable of photoinitiating radical polymerizations in thick pigmented media. J. Appl. Polym. Sci. 79, 1911–1923 (2001)

    Article  CAS  Google Scholar 

  42. Yagci, Y., Denizligil, S.: Photoinitiated cationic polymerization using o-phthaldehyde and pyridinium salt. J. Polym. Sci. A 33, 1461–1464 (1995)

    Article  CAS  Google Scholar 

  43. Miller, R.D., Michl, J.: Polysilane high polymers. Chem. Rev. 89, 1359–1410 (1989)

    Article  CAS  Google Scholar 

  44. Bi, Y., Neckers, D.C.: A visible light initiating system for free radical promoted cationic polymerization. Macromolecules 27, 3683–3693 (1994)

    Article  CAS  Google Scholar 

  45. Crivello, J.V., Dietliker, K.: Photoinitiators for Free Radical Cationic & Anionic Photopolymerization, 2nd edn. SITA Technology Ltd., London, UK (1998)

    Google Scholar 

  46. Corrales, T., Catalina, F., Peinado, C., Allen, N.S.: Free radical macrophotoinitiators: an overview on recent advances. J. Photochem. Photobiol. A: Chem. 159, 103–114 (2003)

    Article  CAS  Google Scholar 

  47. Otsu, T.: Iniferter concept and living radical polymerization. J. Polym. Sci., Part A: Polym. Chem. 38, 2121–2136 (2000)

    Article  CAS  Google Scholar 

  48. Otsu, T., Yoshida, M.: Role of initiator-transfer agent-terminator (iniferter) in radical polymerizations: polymer design by organic disulfides as iniferters. Makromol. Chem., Rapid Commun. 3, 127–132 (1982)

    Article  CAS  Google Scholar 

  49. Allen, N.S.: Photochemistry and Photophysics of Polymeric Materials. Wiley, Hoboken, New Jersey (2010)

    Book  Google Scholar 

  50. Goda, T., Konno, T., Takai, M., Moro, T., Ishihara, K.: Biomimetic phosphorylcholine polymer grafting from polydimethylsiloxane surface using photo-induced polymerization. Biomaterials 27, 5151–5160 (2006)

    Article  CAS  PubMed  Google Scholar 

  51. de Boer, B., Simon, H.K., Werts, M.P.L., van der Vegte, E.W., Hadziioannou, G.: “Living” free radical photopolymerization initiated from surface-grafted iniferter monolayers. Macromolecules 33, 349–356 (2000)

    Article  CAS  Google Scholar 

  52. Luo, N., Hutchison, J.B., Anseth, K.S., Bowman, C.N.: Surface-initiated photopolymerization of Poly(ethylene glycol) Methyl Ether Methacrylate on a Diethyldithiocarbamate-mediated polymer substrate. Macromolecules 35, 2487–2493 (2002)

    Article  CAS  Google Scholar 

  53. Rahane, S.B., Kilbey, S.M., Metters, A.T.: Kinetics of surface-initiated photoiniferter-mediated photopolymerization. Macromolecules 38, 8202–8210 (2005)

    Article  CAS  Google Scholar 

  54. Benetti, E.M., Zapotoczny, S., Vancso, G.J.: Tunable thermoresponsive polymeric platforms on gold by “Photoiniferter”-based surface grafting. Adv. Mater. 19, 268–271 (2007)

    Article  CAS  Google Scholar 

  55. Benetti, E.M., Reimhult, E., de Bruin, J., Zapotoczny, S., Textor, M., Vancso, G.J.: Poly(methacrylic acid) grafts grown from designer surfaces: the effect of initiator coverage on polymerization kinetics, morphology, and properties. Macromolecules 42, 1640–1647 (2009)

    Article  CAS  Google Scholar 

  56. Kitano, H., Kawasaki, A., Kawasaki, H., Morokoshi, S.: Resistance of zwitterionic telomers accumulated on metal surfaces against nonspecific adsorption of proteins. J. Colloid Interface Sci. 282, 340–348 (2005)

    Article  CAS  PubMed  Google Scholar 

  57. Krause, J.E., Brault, N.D., Li, Y., Xue, H., Zhou, Y., Jiang, S.: Photoiniferter-mediated polymerization of zwitterionic carboxybetaine monomers for low-fouling and functionalizable surface coatings. Macromolecules 44, 9213–9220 (2011)

    Article  CAS  Google Scholar 

  58. Korshunova, G.A., Sumbatyan, N.V., Topin, A.N., Mtchedlidze, M.T.: Photoactivatable reagents based on Aryl(trifluoromethyl)diazirines: synthesis and application for studying nucleic acid-protein interactions. Mol. Biol. 36, 823–839 (2000)

    Article  Google Scholar 

  59. Hoyle, C.E., Bowman, C.N.: Thiol-Ene click chemistry. Angew. Chem. Int. Ed. 49, 1540–1573 (2010)

    Article  CAS  Google Scholar 

  60. Liu, L.-H., Yan, M.: Perfluorophenyl Azides: new applications in surface functionalization and nanomaterial synthesis. Acc. Chem. Res. 43, 1434–1443 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lavik, E., Langer, R.: Tissue engineering: current state and perspectives. Appl. Microbiol. Biotechnol. 65, 1–8 (2004)

    Article  CAS  PubMed  Google Scholar 

  62. Fleet, G.W.J., Porter, R.R., Knowles, J.R.: Affinity labelling of antibodies with aryl nitrene as reactive group. Nature 224, 511–512 (1969)

    Article  CAS  Google Scholar 

  63. Smith, R.A.G., Knowles, J.R.: Aryldiazirines. potential reagents for photolabeling of biological receptor sites. J. Am. Chem. Soc. 95, 5072–5073 (1973)

    Article  CAS  PubMed  Google Scholar 

  64. Yan, M., Cai, S.X., Wybourne, M.N., Keana, J.F.W.: Photochemical functionalization of polymer surfaces and the production of biomolecule-carrying micrometer-scale structures by deep-UV lithography using 4-substituted perfluorophenyl azides. J. Am. Chem. Soc. 115, 814–816 (1993)

    Article  CAS  Google Scholar 

  65. Yan, M., Cai, S.X., Wybourne, M.N., Keana, J.F.W.: N-Hydroxysuccinimide ester functionalized perfluorophenyl azides as novel photoactive heterobifunctional crosslinking reagents. the covalent immobilization of biomolecules to polymer surfaces. Bioconjug. Chem. 5, 151–157 (1994)

    Article  CAS  PubMed  Google Scholar 

  66. Brunner, J., Senn, H., Richards, F.M.: 3-Trifluoromethyl-3-phenyldiazirine. A new carbene generating group for photolabeling reagents. J. Biol. Chem. 255, 3313–3318 (1980)

    PubMed  CAS  Google Scholar 

  67. Moss, R.A.: Diazirines: carbene precursors par excellence. Acc. Chem. Res. 39, 267–272 (2006)

    Article  CAS  PubMed  Google Scholar 

  68. Posner, T.: Beiträge zur Kenntniss der ungesättigten Verbindungen. II. Ueber die Addition von Mercaptanen an ungesättigte Kohlenwasserstoffe. Chem. Ber. 38, 646–657 (1905)

    Article  Google Scholar 

  69. Lowe, A.B.: Thiol-ene, “click” reactions and recent applications in polymer and materials synthesis. Polym. Chem. 1, 17–36 (2010)

    Article  CAS  Google Scholar 

  70. Dénès, F., Pichowicz, M., Povie, G., Renaud, P.: Thiyl radicals in organic synthesis. Chem. Rev. 114, 2587–2693 (2014)

    Article  CAS  PubMed  Google Scholar 

  71. Fairbanks, B.D., Schwartz, M.P., Halevi, A.E., Nuttelman, C.R., Bowman, C.N., Anseth, K.S.: A versatile synthetic extracellular matrix mimic via Thiol-Norbornene photopolymerization. Adv. Mater. 21, 5005–5010 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ito, Y., Hasuda, H., Sakuragi, M., Tsuzuki, S.: Surface modification of plastic, glass and titanium by photoimmobilization of polyethylene glycol for antibiofouling. Acta Biomater. 3, 1024–1032 (2007)

    Article  CAS  PubMed  Google Scholar 

  73. Sakuragi, M., Tsuzuki, S., Hasuda, H., Wada, A., Matoba, K., Kubo, I., Ito, Y.: Synthesis of a photoimmobilizable histidine polymer for surface modification. J. Appl. Polym. Sci. 112, 315–319 (2009)

    Article  CAS  Google Scholar 

  74. Sakuragi, M., Tsuzuki, S., Obuse, S., Wada, A., Matoba, K., Kubo, I., Ito, Y.: A photoimmobilizable sulfobetaine-based polymer for a nonbiofouling surface. Mater. Sci. Eng., C 30, 316–322 (2010)

    Article  CAS  Google Scholar 

  75. Konno, T., Hasuda, H., Ishihara, K., Ito, Y.: Photo-immobilization of a phospholipid polymer for surface modification. Biomaterials 26, 1381–1388 (2005)

    Article  CAS  PubMed  Google Scholar 

  76. Ito, Y., Nogawa, M.: Preparation of a protein micro-array using a photo-reactive polymer for a cell-adhesion assay. Biomaterials 24, 3021–3026 (2003)

    Article  CAS  PubMed  Google Scholar 

  77. Ito, Y., Hasuda, H., Yamauchi, T., Komatsu, N., Ikebuchi, K.: Immobilization of erythropoietin to culture erythropoietin-dependent human leukemia cell line. Biomaterials 25, 2293–2298 (2004)

    Article  CAS  PubMed  Google Scholar 

  78. Kitajima, T., Obuse, S., Adachi, T., Tomita, M., Ito, Y.: Recombinant human gelatin substitute with photoreactive properties for cell culture and tissue engineering. Biotechnol. Bioeng. 108, 2468–2476 (2011)

    Article  CAS  PubMed  Google Scholar 

  79. Kim, K.-I., Lee, J.-W., Ito, Y., Kang, J.-H., Song, K.-S., Jang, E.-C., Son, T.-I.: Preparation of photo-reactive azidophenyl chitosan derivative for immobilization of growth factors. J. Appl. Polym. Sci. 117, 3029–3037 (2010)

    CAS  Google Scholar 

  80. Na, H.-N., Kim, K.-I., Han, J.-H., Lee, J.-G., Son, T.-I., Han, D.-K., Ito, Y., Song, K.-S., Jang, E.-C.: Synthesis of O-carboxylated low molecular chitosan with azido phenyl group: Its application for adhesion prevention. Macromol. Res. 18, 1001–1007 (2010)

    Article  CAS  Google Scholar 

  81. Son, T.I., Sakuragi, M., Takahashi, S., Obuse, S., Kang, J., Fujishiro, M., Matsushita, H., Gong, J., Shimizu, S., Tajima, Y., Yoshida, Y., Suzuki, K., Yamamoto, T., Nakamura, M., Ito, Y.: Visible light-induced crosslinkable gelatin. Acta Biomater. 6, 4005–4010 (2010)

    Article  CAS  PubMed  Google Scholar 

  82. Park, S.-H., Seo, S.-Y., Na, H.-N., Kim, K.-I., Lee, J.-W., Woo, H.-D., Lee, J.-H., Seok, H.-K., Lee, J.-G., Chung, S.-I., Chung, K., Han, D., Ito, Y., Jang, E.-C., Son, T.-I.: Preparation of a visible light-reactive low molecular-O-carboxymethyl chitosan (LM-O-CMCS) derivative and applicability as an anti-adhesion agent. Macromol. Res. 19, 921 (2011)

    Article  CAS  Google Scholar 

  83. Seo, S.Y., Park, S.H., Lee, H.J., Na, H.N., Kim, K.I., Han, D.K., Lee, J.K., Ito, Y., Son, T.I.: Visible light-induced photocurable (forming a film) low molecular weight chitosan derivatives for biomedical applications: Synthesis, characterization and in vitro biocompatibility. J. Ind. Eng. Chem. 18, 1258–1262 (2012)

    Article  CAS  Google Scholar 

  84. Bochet, C.G.: Photolabile protecting groups and linkers. J. Chem. Soc. Perkin Trans. 1, 125–142 (2002)

    Google Scholar 

  85. Ellis-Davies, G.C.R.: Caged compounds: photorelease technology for control of cellular chemistry and physiology. Nat. Meth. 4, 619–628 (2007)

    Article  CAS  Google Scholar 

  86. Wang, P.: Photolabile protecting groups: structure and reactivity. Asian J. Org. Chem. 2, 452–464 (2013)

    Article  CAS  Google Scholar 

  87. Sheehan, J.C., Wilson, R.M., Oxford, A.W.: Photolysis of methoxy-substituted benzoin esters. Photosensitive protecting group for carboxylic acids. J. Am. Chem. Soc. 93, 7222–7228 (1971)

    Article  CAS  Google Scholar 

  88. Sheehan, J.C., Umezawa, K.: Phenacyl photosensitive blocking groups. J. Org. Chem. 38, 3771–3774 (1973)

    Article  CAS  Google Scholar 

  89. Barltrop, J.A., Plant, P.J., Schofield, P.: Photosensitive protective groups. Chem. Commun., 822–823 (1966)

    Google Scholar 

  90. Patchornik, A., Amit, B., Woodward, R.B.: Photosensitive protecting groups. J. Am. Chem. Soc. 92, 6333–6335 (1970)

    Article  CAS  Google Scholar 

  91. Pirrung, M.C., Lee, Y.R., Park, K., Springer, J.B.: Pentadienylnitrobenzyl and Pentadienylnitropiperonyl photochemically removable protecting groups. J. Org. Chem. 64, 5042–5047 (1999)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masuki Kawamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kawamoto, M., Matsuda, T., Ito, Y. (2018). Photochemical Processed Materials. In: Ito, Y. (eds) Photochemistry for Biomedical Applications. Springer, Singapore. https://doi.org/10.1007/978-981-13-0152-0_2

Download citation

Publish with us

Policies and ethics