Photodynamic Therapy

  • Takahiro Nomoto
  • Nobuhiro NishiyamaEmail author


Photodynamic therapy (PDT) is a minimally invasive method for the treatment of malignant tumors and other diseases. Although PDT is clinically used, the development of nanocarriers for the delivery of photosensitizers (PSs) is expected to improve the therapeutic efficacy and restrain the side effects such as skin phototoxicity. This chapter deals with the principle of PDT, the fundamental theory of tumor targeting, and the rational design of polymeric nanocarriers for the PS delivery.


Photodynamic therapy Photosensitizer Polymeric micelle 


  1. 1.
    MacDonald, I.J., Dougherty, T.J.: Basic principles of photodynamic therapy. J. Porphyrins Phthalocyanines 5, 105–129 (2001)CrossRefGoogle Scholar
  2. 2.
    Dolmans, D.E., Fukumura, D., Jain, R.K.: Photodynamic therapy for cancer. Nat. Rev. Cancer 3, 380–387 (2003)CrossRefPubMedGoogle Scholar
  3. 3.
    Moore, C.M., Pendse, D., Emberton, M.: Photodynamic therapy for prostate cancer-a review of current status and future promise. Nat. Clin. Pract. Urol. 6, 18–30 (2009)CrossRefPubMedGoogle Scholar
  4. 4.
    Allison, R.R., Sibata, C.H.: Oncologic photodynamic therapy photosensitizers: a clinical review. Photodiagn. Photodyn. Ther. 7, 61–75 (2010)CrossRefGoogle Scholar
  5. 5.
    Agostinis, P., Berg, K., Cengel, K.A., Foster, T.H., Girotti, A.W., Gollnick, S.O., et al.: Photodynamic therapy of cancer: an update. CA Cancer J. Clin. 61, 250–281 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Moan, J., Berg, K.: The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen. Photochem. Photobiol. 53, 549–553 (1991)CrossRefPubMedGoogle Scholar
  7. 7.
    Master, A., Livingston, M., Sen, Gupta A.: Photodynamic nanomedicine in the treatment of solid tumors: perspectives and challenges. J Control Release 168, 88–102 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Nishiyama, N., Morimoto, Y., Jang, W.-D., Kataoka, K.: Design and development of dendrimer photosensitizer-incorporated polymeric micelles for enhanced photodynamic therapy. Adv. Drug Deliv. Rev. 61, 327–338 (2009)CrossRefPubMedGoogle Scholar
  9. 9.
    Rai, P., Mallidi, S., Zheng, X.A., Rahmanzadeh, R., Mir, Y., Elrington, S., et al.: Development and applications of photo-triggered theranostic agents. Adv. Drug Deliv. Rev. 62, 1094–1124 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Paszko, E., Ehrhardt, C., Senge, M.O., Kelleher, D.P., Reynolds, J.V.: Nanodrug applications in photodynamic therapy. Photodiagnosis Photodyn Ther. 8, 14–29 (2011)CrossRefPubMedGoogle Scholar
  11. 11.
    Lim, C.K., Heo, J., Shin, S., Jeong, K., Seo, Y.H., Jang, W.D., et al.: Nanophotosensitizers toward advanced photodynamic therapy of cancer. Cancer Lett. 334, 176–187 (2013)CrossRefPubMedGoogle Scholar
  12. 12.
    Dreher, M.R., Liu, W., Michelich, C.R., Dewhirst, M.W., Yuan, F., Chilkoti, A.: Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J. Nat. Cancer Inst. 98, 335–344 (2006)CrossRefPubMedGoogle Scholar
  13. 13.
    Jain, R.K., Stylianopoulos, T.: Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 7, 653–664 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Chauhan, V.P., Jain, R.K.: Strategies for advancing cancer nanomedicine. Nat. Mater. 12, 958–962 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Maeda, H., Fang, J., Inutsuka, T., Kitamoto, Y.: Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications. Int. Immunopharmacol. 3, 319–328 (2003)CrossRefPubMedGoogle Scholar
  16. 16.
    Maeda, H., Greish, K., Fang, J.: The EPR effect and polymeric drugs: a paradigm shift for cancer chemotherapy in the 21st century. Polym. Ther. Ii: Polym. Drugs Conjugates Gene. Deliv. Syst. 193, 103–121 (2006)Google Scholar
  17. 17.
    Torchilin, V.: Tumor delivery of macromolecular drugs based on the EPR effect. Adv. Drug Deliv. Rev. 63, 131–135 (2011)CrossRefPubMedGoogle Scholar
  18. 18.
    Ogris, M., Brunner, S., Schuller, S., Kircheis, R., Wagner, E.: PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene. Ther. 6, 595–605 (1999)CrossRefPubMedGoogle Scholar
  19. 19.
    Nomoto, T., Matsumoto, Y., Miyata, K., Oba, M., Fukushima, S., Nishiyama, N., et al.: In situ quantitative monitoring of polyplexes and polyplex micelles in the blood circulation using intravital real-time confocal laser scanning microscopy. J Control Release 151, 104–109 (2011)CrossRefPubMedGoogle Scholar
  20. 20.
    Cabral, H., Nishiyama, N., Kataoka, K.: Supramolecular nanodevices: From design validation to theranostic nanomedicine. Acc. Chem. Res. 44, 999–1008 (2011)CrossRefPubMedGoogle Scholar
  21. 21.
    Miyata, K., Nishiyama, N., Kataoka, K.: Rational design of smart supramolecular assemblies for gene delivery: chemical challenges in the creation of artificial viruses. Chem. Soc. Rev. 41, 2562–2574 (2012)CrossRefPubMedGoogle Scholar
  22. 22.
    Choi, H.S., Liu, W., Misra, P., Tanaka, E., Zimmer, J.P., Ipe, B.I., et al.: Renal clearance of quantum dots. Nat. Biotechnol. 25, 1165–1170 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Reuther, T., Kubler, A.C., Zillmann, U., Flechtenmacher, C., Sinn, H.: Comparison of the in vivo efficiency of Photofrin II-, mTHPC-, mTHPC-PEG- and mTHPCnPEG-mediated PDT in a human xenografted head and neck carcinoma. Lasers Surg. Med. 29, 314–322 (2001)CrossRefPubMedGoogle Scholar
  24. 24.
    Hofman, J.W., Carstens, M.G., van Zeeland, F., Helwig, C., Flesch, F.M., Hennink, W.E., et al.: Photocytotoxicity of mTHPC (temoporfin) loaded polymeric micelles mediated by lipase catalyzed degradation. Pharm. Res. 25, 2065–2073 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Shieh, M.J., Peng, C.L., Chiang, W.L., Wang, C.H., Hsu, C.Y., Wang, S.J., et al.: Reduced skin photosensitivity with meta-tetra(hydroxyphenyl)chlorin-loaded micelles based on a poly(2-ethyl-2-oxazoline)-b-poly(d, l-lactide) diblock copolymer in vivo. Mol. Pharm. 7, 1244–1253 (2010)CrossRefPubMedGoogle Scholar
  26. 26.
    Nishiyama, N., Nakagishi, Y., Morimoto, Y., Lai, P.S., Miyazaki, K., Urano, K., et al.: Enhanced photodynamic cancer treatment by supramolecular nanocarriers charged with dendrimer phthalocyanine. J Control Release 133, 245–251 (2009)CrossRefPubMedGoogle Scholar
  27. 27.
    Yoon, H.Y., Koo, H., Choi, K.Y., Lee, S.J., Kim, K., Kwon, I.C., et al.: Tumor-targeting hyaluronic acid nanoparticles for photodynamic imaging and therapy. Biomaterials 33, 3980–3989 (2012)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Laboratory for Chemistry and Life Science, Institute of Innovative ResearchTokyo Institute of TechnologyMidori-Ku, YokohamaJapan

Personalised recommendations