Advertisement

Perturbation Analysis of the Drazin Inverse and the Group Inverse

  • Guorong WangEmail author
  • Yimin Wei
  • Sanzheng Qiao
Chapter
Part of the Developments in Mathematics book series (DEVM, volume 53)

Abstract

Having studied the perturbation of the M-P inverse and the weighted M-P inverse, we now turn to the perturbation analysis of the Drazin and group inverses.

References

  1. 1.
    Y. Wei, G. Wang, The perturbation theory for the Drazin inverse and its applications. Linear Algebra Appl. 258, 179–186 (1997)Google Scholar
  2. 2.
    S.L. Campbell, C.D. Meyer Jr., Generalized Inverses of Linear Transformations (Pitman, London, 1979)Google Scholar
  3. 3.
    G. Rong, The error bound of the perturbation of Drazin inverse. Linear Algebra Appl. 47, 159–168 (1982)MathSciNetCrossRefGoogle Scholar
  4. 4.
    X. Li, On computation of Drazin inverses of a matrix. J. Shanghai Norm. Univ. 11, 9–16 (1982). in ChinesezbMATHGoogle Scholar
  5. 5.
    Y. Wei, G. Wang, D. Wang, Condition number of Drazin inverse and their condition numbers of singular linear systems. Appl. Math. Comput. 146, 455–467 (2003)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Y. Wei, On the perturbation of the group inverse and oblique projection. Appl. Math. Comput. 98, 29–42 (1999)MathSciNetCrossRefGoogle Scholar
  7. 7.
    X. Li, Y. Wei, An improvement on the perturbation of the group inverse and oblique projection. Linear Algebra Appl. 338, 53–66 (2001)MathSciNetCrossRefGoogle Scholar
  8. 8.
    X. Chen, G. Chen, On the continuity and perturbation of the weighted Drazin inverses. J. East China Norm. Univ. 7, 21–26 (1992). in ChineseMathSciNetzbMATHGoogle Scholar
  9. 9.
    N.C. González, J.J. Koliha, Y. Wei, Perturbation of the Drazin inverse for matrices with equal eigenprojections at zero. Linear Algebra Appl. 312, 181–189 (2000)MathSciNetCrossRefGoogle Scholar
  10. 10.
    R.E. Hartwig, G. Wang, Y. Wei, Some additive results on the Drazin inverse. Linear Algebra Appl. 322, 207–217 (2001)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Y. Wei, Perturbation bound of the Drazin inverse. Appl. Math. Comput. 125, 231–244 (2002)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Y. Wei, The Drazin inverse of updating of a square matrix with application to perturbation formula. Appl. Math. Comput. 108, 77–83 (2000)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Y. Wei, H. Wu, On the perturbation of the Drazin inverse and oblique projection. Appl. Math. Lett. 13, 77–83 (2000)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Y. Wei, H. Wu, Challenging problems on the perturbation of Drazin inverse. Ann. Oper. Res. 103, 371–378 (2001)Google Scholar
  15. 15.
    Y. Wei, H. Diao, Condition number for the Drazin inverse and the Drazin-inverse solution of singular linear system with their condition numbers. J. Comput. Appl. Math. 182, 270–289 (2005)MathSciNetCrossRefGoogle Scholar
  16. 16.
    N. Castro González, J. Robles, J.Y. Vélez-Cerrada, Characterizations of a class of matrices and perturbation of the Drazin inverse. SIAM J. Matrix Anal. Appl. 30, 882–897 (2008)MathSciNetCrossRefGoogle Scholar
  17. 17.
    X. Liu, W. Wang, Y. Wei, Continuity properties of the \(\{1\}\)-inverse and perturbation bounds for the Drazin inverse. Linear Algebra Appl. 429, 1026–1037 (2008)MathSciNetCrossRefGoogle Scholar
  18. 18.
    J. Zhou, C. Bu, Y. Wei, Some block matrices with signed Drazin inverses. Linear Algebra Appl. 437, 1779–1792 (2012)MathSciNetCrossRefGoogle Scholar
  19. 19.
    J. Zhou, C. Bu, Y. Wei, Group inverse for block matrices and some related sign analysis. Linear Multilinear Algebra 60, 669–681 (2012)MathSciNetCrossRefGoogle Scholar
  20. 20.
    G. Zhuang, J. Chen, D. Cvetković-Ilić, Y. Wei, Additive property of Drazin invertibility of elements in a ring. Linear Multilinear Algebra 60, 903–910 (2012)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Y. Wei, C. Deng, A note on additive results for the Drazin inverse. Linear Multilinear Algebra 59, 1319–1329 (2011)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Q. Xu, C. Song, Y. Wei, The stable perturbation of the Drazin inverse of the square matrices. SIAM J. Matrix Anal. Appl. 31(3), 1507–1520 (2009)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Y. Wei, Acute perturbation of the group inverse. Linear Algebra Appl. 534, 135–157 (2017)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Y. Wei, X. Li, F. Bu, A perturbation bound of the Drazin inverse of a matrix by separation of simple invariant subspaces. SIAM J. Matrix Anal. Appl. 27, 72–81 (2005)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Y. Wei, W. Xu, Condition number of Bott-Duffin inverse and their condition numbers. Appl. Math. Comput. 142, 79–97 (2003)MathSciNetCrossRefGoogle Scholar
  26. 26.
    G. Wang, Y. Wei, Perturbation theory for the Bott-Duffin inverse and its applications. J. Shanghai Norm. Univ. 22, 1–6 (1993)MathSciNetGoogle Scholar
  27. 27.
    G. Wang, Y. Wei, The perturbation analysis of doubly perturbed constrained systems. J. Shanghai Norm. Univ. 25, 9–14 (1996)Google Scholar
  28. 28.
    G. Chen, G. Liu, Y. Xue, Perturbation theory for the generalized Bott-Duffin inverse and its applications. Appl. Math. Comput. 129 (2002)MathSciNetCrossRefGoogle Scholar
  29. 29.
    G. Wang, Y. Wei, Perturbation theory for the W-weighted Drazin inverse and its applications. J. Shanghai Norm. Univ. 26, 9–15 (1997)Google Scholar
  30. 30.
    Y. Wei, G. Wang, Perturbation theory for the generalized inverse \(A_{T, S}^{(2)}\). J. Fudan Univ. 39, 482–488 (2000)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Y. Wei, Index splitting for Drazin inverse and the singular linear system. Appl. Math. Comput. 95, 115–124 (1998)Google Scholar
  32. 32.
    C. Zhu, G. Chen, Index splitting for the Drazin inverse of linear operator in Banach space. Appl. Math. Comput. 135, 201–209 (2003)Google Scholar
  33. 33.
    Y. Wei, H. Wu, Additional results on index splittings for Drazin inverse solutions of singular systems. Electron. J. Linear Algebra 8, 83–93 (2001)Google Scholar
  34. 34.
    Y. Wei, Perturbation analysis of singular linear systems with index one. Int. J. Comput. Math. 74, 483–491 (2000)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Y. Wei, H. Wu, Convergence properties of Krylov subspace methods for singular linear systems with arbitrary index. J. Comput. Appl. Math. 114, 305–318 (2000)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Y. Wei, H. Wu, On the use of incomplete semiiterative methods for singular systems and applications in Markov chain modeling. Appl. Math. Comput. 125, 245–259 (2002)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Z. Cao, Polynomial acceleration methods for solving singular systems of linear equations. J. Comput. Math. 9, 378–387 (1991)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Z. Cao, On the convergence of iterative methods for solving singular linear systems. J. Comput. Appl. Math. 145, 1–9 (2002)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Y. Wei, H. Wu, On the perturbation and subproper splittings for the generalized inverse \(A_{T, S}^{(2)}\) of rectangular matrix \(A\). J. Comput. Appl. Math. 137, 317–329 (2001)Google Scholar
  40. 40.
    G. Wang, Y. Wei, Proper splittings for restricted linear equations and the generalized inverse \(A_{T,S}^{(2)}\). Numer. Math. J. Chin. Univ. (Ser. B) 7, 1–13 (1998)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Science Press 2018

Authors and Affiliations

  1. 1.Department of MathematicsShanghai Normal UniversityShanghaiChina
  2. 2.Department of MathematicsFudan UniversityShanghaiChina
  3. 3.Department of Computing and SoftwareMcMaster UniversityHamiltonCanada

Personalised recommendations