Skip to main content

Parallel Algorithms for Computing the Generalized Inverses

  • 1372 Accesses

Part of the Developments in Mathematics book series (DEVM,volume 53)

Abstract

The UNIVersal Automatic Computer (UNIVAC I) and the machines built in 1940s and mid 1950s are often referred to as the first generation of computers.

Keywords

  • Improved Parallel Algorithm
  • Universal Automatic Computer
  • Lower Triangular Linear System
  • Weighted Moore-Penrose Inverse
  • Drazin Inverse

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-13-0146-9_7
  • Chapter length: 29 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-981-13-0146-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 7.1
Fig. 7.2
Fig. 7.3
Fig. 7.4
Fig. 7.5
Fig. 7.6

References

  1. D. Heller, A survey of parallel algorithms in numerical linear algebra. SIAM Review 20, 740–777 (1978)

    MathSciNet  CrossRef  Google Scholar 

  2. L. Kang et al., Asynchronous Parallel Algorithms for Solving the Problem of Mathematical Physics (Science Press, Beijing, 1985). in Chinese

    Google Scholar 

  3. J.M. Ortega, R.G. Voigt, Solution of partial differential equations on vector and parallel computer. SIAM Review 27, 149–240 (1985)

    MathSciNet  CrossRef  Google Scholar 

  4. J.M. Ortega, Introduction to Parallel and Vector Solution of Linear Systems (Plenum Press, New York, 1988)

    CrossRef  Google Scholar 

  5. O.Y. Devel, E.V. Krishnamurthy, An iterative pipelined arrary architecture for the generalized matrix inversion. Inform. Process. Lett. 26, 263–267 (1988)

    MathSciNet  CrossRef  Google Scholar 

  6. G. Wang, L. Senquan, Fast parallel algorithm for computing the generalized inverses \(A^{\dagger }\) and \(A_{MN}^{\dagger }\). J. Comput. Math. 6, 348–354 (1988)

    MathSciNet  MATH  Google Scholar 

  7. G. Wang, The Moore-Penrose inverse of bidiagonal matrices and its parallel algorithm. Numer. Math. J. Chinese Univ., 12, 14–23 (1990) (in Chinese)

    Google Scholar 

  8. G. Wang, An improved parallel algorithm for computing the generalized inverse \(A^\dagger \). Inform. Process. Lett. 41, 243–251 (1992)

    MathSciNet  CrossRef  Google Scholar 

  9. G. Wang, PCR algorithm for parallel computing minimum-norm least-squares solution of inconsistent linear equations. Numer. Math. J. Chinese Univ. English Series 2, 1–10 (1993)

    Google Scholar 

  10. J. Chen, Parallel Numerical Methods (Qinghua Univ. Press, Beijing, 1983). in Chinese

    Google Scholar 

  11. M.R. Zargham, Computer Architecture (Prentice-Hall Inc, Single and Paralled Systems, 1996)

    MATH  Google Scholar 

  12. J.J. Dongarra, I.S. Duff, D.C. Sorensen, van der Vorst, A. Henk, Solving Linear Systems on Vector and Shared Memory Computers. (Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1991)

    Google Scholar 

  13. B. Zhang et al., Principles and Methods of Numerical Parallel Computation (National Defence Science and Technology Press, Beijing, 1999). in Chinese

    Google Scholar 

  14. A.K. Chandra, Maximal parallelism in matrix multiplication. Technical Report RC-6139 (I.B.M. Watson Research Center, Yorktown Heights, N.Y., 1976)

    Google Scholar 

  15. E.P. Preparata, D.V. Sarwate, An improved parallel processor bound in fast matrix inversion. Inform. Process. Lett. 7, 148–150 (1978)

    MathSciNet  CrossRef  Google Scholar 

  16. A.H. Sameh, R.P. Brent, Solving triangular systems on a parallel computer. SIAM J. Numer. Anal. 14, 1101–1113 (1977)

    MathSciNet  CrossRef  Google Scholar 

  17. L. Csanky, Fast parallel matrix inversion algorithm. SIAM J. Comput. 5, 618–623 (1976)

    MathSciNet  CrossRef  Google Scholar 

  18. G. Wang, L. Senquan, Fast parallel algorithm for computing generalized inverses \(A^{\dagger }\) and \(A_{MN}^{\dagger }\). J. Shanghai Normal Univ. 16, 17–22 (1987). in Chinese

    Google Scholar 

  19. L. Zhang et al., Design and Analysis of Parallel Algorithms (Hunan Science and Technology Press, Hunan, 1984). in Chinese

    Google Scholar 

  20. B. Noble, J. Demmel, Applied Linear Algebra, 3rd edn. (Prentice-Hall, New Jersey, 1988)

    Google Scholar 

  21. G. Wang, Y. Wei, PCR algorithm for the parallel computation of the solution of a class of singular equations. J. Shanghai Normal Univ. 23, 1–8 (1994)

    Google Scholar 

  22. Y. Wei, G. Wang, PCR algorithm for parallel computing minimum-norm \((T)\) least-squares \((S)\) solution of inconsistent linear equations. Appl. Math. Comput. 133, 547–557 (2002)

    MathSciNet  MATH  Google Scholar 

  23. M.K. Sridhar, A new algorithm for parallel solution of linear equations. Inform. Process. Lett. 24, 407–412 (1987)

    MathSciNet  CrossRef  Google Scholar 

  24. G. Wang, Y. Wei, Parallel (\(M\)-\(N\))SVD algorithm on the SIMD computers. Wuhan Univ. J. Natural Sci., vol. 1, pp. 541–546. International Parallel Computing Conference (1996)

    Google Scholar 

  25. L. Chen, E.V. Krishnamurthy, I. Madeod, Generalized matrix inversion and rank computation by successive matrix powering. Parallel Comput. 20, 297–311 (1994)

    MathSciNet  CrossRef  Google Scholar 

  26. Y. Wei, Successive matrix squaring for computing the Drazin inverse. Appl. Math. Comput. 108, 67–75 (2000)

    MathSciNet  MATH  Google Scholar 

  27. Y. Wei, W. Hebing, J. Wei, Successive matrix squaring algorithm for parallel computing the weighted generalized inverse \(A_{MN}^{\dagger }\). Appl. Math. Comput. 116, 289–296 (2000)

    MathSciNet  MATH  Google Scholar 

  28. J. Wang, A recurrent neural networks for real-time matrix inversion. Appl. Math. Comput. 55, 23–34 (1993)

    CrossRef  Google Scholar 

  29. J. Wang, Recurrent neural networks for computing pseudoinverse of rank-deficient matrices. SIAM J. Sci. Comput. 18, 1479–1493 (1997)

    MathSciNet  CrossRef  Google Scholar 

  30. Y. Wei, Recurrent neural networks for computing weighted Moore-Penrose inverse. Appl. Math. Comput. 116, 279–287 (2000)

    MathSciNet  CrossRef  Google Scholar 

  31. G. Wang, Y. Wei, An improved parallel algorithm for computing the weighted Moore-Penrose inverse \(A_{MN}^{\dagger }\). J. Shanghai Normal Univ. 29, 12–20 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guorong Wang .

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd. and Science Press

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Wang, G., Wei, Y., Qiao, S. (2018). Parallel Algorithms for Computing the Generalized Inverses. In: Generalized Inverses: Theory and Computations. Developments in Mathematics, vol 53. Springer, Singapore. https://doi.org/10.1007/978-981-13-0146-9_7

Download citation