Advertisement

Parallel Algorithms for Computing the Generalized Inverses

  • Guorong WangEmail author
  • Yimin Wei
  • Sanzheng Qiao
Chapter
Part of the Developments in Mathematics book series (DEVM, volume 53)

Abstract

The UNIVersal Automatic Computer (UNIVAC I) and the machines built in 1940s and mid 1950s are often referred to as the first generation of computers.

References

  1. 1.
    D. Heller, A survey of parallel algorithms in numerical linear algebra. SIAM Review 20, 740–777 (1978)MathSciNetCrossRefGoogle Scholar
  2. 2.
    L. Kang et al., Asynchronous Parallel Algorithms for Solving the Problem of Mathematical Physics (Science Press, Beijing, 1985). in ChineseGoogle Scholar
  3. 3.
    J.M. Ortega, R.G. Voigt, Solution of partial differential equations on vector and parallel computer. SIAM Review 27, 149–240 (1985)MathSciNetCrossRefGoogle Scholar
  4. 4.
    J.M. Ortega, Introduction to Parallel and Vector Solution of Linear Systems (Plenum Press, New York, 1988)CrossRefGoogle Scholar
  5. 5.
    O.Y. Devel, E.V. Krishnamurthy, An iterative pipelined arrary architecture for the generalized matrix inversion. Inform. Process. Lett. 26, 263–267 (1988)MathSciNetCrossRefGoogle Scholar
  6. 6.
    G. Wang, L. Senquan, Fast parallel algorithm for computing the generalized inverses \(A^{\dagger }\) and \(A_{MN}^{\dagger }\). J. Comput. Math. 6, 348–354 (1988)MathSciNetzbMATHGoogle Scholar
  7. 7.
    G. Wang, The Moore-Penrose inverse of bidiagonal matrices and its parallel algorithm. Numer. Math. J. Chinese Univ., 12, 14–23 (1990) (in Chinese)Google Scholar
  8. 8.
    G. Wang, An improved parallel algorithm for computing the generalized inverse \(A^\dagger \). Inform. Process. Lett. 41, 243–251 (1992)MathSciNetCrossRefGoogle Scholar
  9. 9.
    G. Wang, PCR algorithm for parallel computing minimum-norm least-squares solution of inconsistent linear equations. Numer. Math. J. Chinese Univ. English Series 2, 1–10 (1993)Google Scholar
  10. 10.
    J. Chen, Parallel Numerical Methods (Qinghua Univ. Press, Beijing, 1983). in ChineseGoogle Scholar
  11. 11.
    M.R. Zargham, Computer Architecture (Prentice-Hall Inc, Single and Paralled Systems, 1996)zbMATHGoogle Scholar
  12. 12.
    J.J. Dongarra, I.S. Duff, D.C. Sorensen, van der Vorst, A. Henk, Solving Linear Systems on Vector and Shared Memory Computers. (Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1991)Google Scholar
  13. 13.
    B. Zhang et al., Principles and Methods of Numerical Parallel Computation (National Defence Science and Technology Press, Beijing, 1999). in ChineseGoogle Scholar
  14. 14.
    A.K. Chandra, Maximal parallelism in matrix multiplication. Technical Report RC-6139 (I.B.M. Watson Research Center, Yorktown Heights, N.Y., 1976)Google Scholar
  15. 15.
    E.P. Preparata, D.V. Sarwate, An improved parallel processor bound in fast matrix inversion. Inform. Process. Lett. 7, 148–150 (1978)MathSciNetCrossRefGoogle Scholar
  16. 16.
    A.H. Sameh, R.P. Brent, Solving triangular systems on a parallel computer. SIAM J. Numer. Anal. 14, 1101–1113 (1977)MathSciNetCrossRefGoogle Scholar
  17. 17.
    L. Csanky, Fast parallel matrix inversion algorithm. SIAM J. Comput. 5, 618–623 (1976)MathSciNetCrossRefGoogle Scholar
  18. 18.
    G. Wang, L. Senquan, Fast parallel algorithm for computing generalized inverses \(A^{\dagger }\) and \(A_{MN}^{\dagger }\). J. Shanghai Normal Univ. 16, 17–22 (1987). in ChineseGoogle Scholar
  19. 19.
    L. Zhang et al., Design and Analysis of Parallel Algorithms (Hunan Science and Technology Press, Hunan, 1984). in ChineseGoogle Scholar
  20. 20.
    B. Noble, J. Demmel, Applied Linear Algebra, 3rd edn. (Prentice-Hall, New Jersey, 1988)Google Scholar
  21. 21.
    G. Wang, Y. Wei, PCR algorithm for the parallel computation of the solution of a class of singular equations. J. Shanghai Normal Univ. 23, 1–8 (1994)Google Scholar
  22. 22.
    Y. Wei, G. Wang, PCR algorithm for parallel computing minimum-norm \((T)\) least-squares \((S)\) solution of inconsistent linear equations. Appl. Math. Comput. 133, 547–557 (2002)MathSciNetzbMATHGoogle Scholar
  23. 23.
    M.K. Sridhar, A new algorithm for parallel solution of linear equations. Inform. Process. Lett. 24, 407–412 (1987)MathSciNetCrossRefGoogle Scholar
  24. 24.
    G. Wang, Y. Wei, Parallel (\(M\)-\(N\))SVD algorithm on the SIMD computers. Wuhan Univ. J. Natural Sci., vol. 1, pp. 541–546. International Parallel Computing Conference (1996)Google Scholar
  25. 25.
    L. Chen, E.V. Krishnamurthy, I. Madeod, Generalized matrix inversion and rank computation by successive matrix powering. Parallel Comput. 20, 297–311 (1994)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Y. Wei, Successive matrix squaring for computing the Drazin inverse. Appl. Math. Comput. 108, 67–75 (2000)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Y. Wei, W. Hebing, J. Wei, Successive matrix squaring algorithm for parallel computing the weighted generalized inverse \(A_{MN}^{\dagger }\). Appl. Math. Comput. 116, 289–296 (2000)MathSciNetzbMATHGoogle Scholar
  28. 28.
    J. Wang, A recurrent neural networks for real-time matrix inversion. Appl. Math. Comput. 55, 23–34 (1993)CrossRefGoogle Scholar
  29. 29.
    J. Wang, Recurrent neural networks for computing pseudoinverse of rank-deficient matrices. SIAM J. Sci. Comput. 18, 1479–1493 (1997)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Y. Wei, Recurrent neural networks for computing weighted Moore-Penrose inverse. Appl. Math. Comput. 116, 279–287 (2000)MathSciNetCrossRefGoogle Scholar
  31. 31.
    G. Wang, Y. Wei, An improved parallel algorithm for computing the weighted Moore-Penrose inverse \(A_{MN}^{\dagger }\). J. Shanghai Normal Univ. 29, 12–20 (2000)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Science Press 2018

Authors and Affiliations

  1. 1.Department of MathematicsShanghai Normal UniversityShanghaiChina
  2. 2.Department of MathematicsFudan UniversityShanghaiChina
  3. 3.Department of Computing and SoftwareMcMaster UniversityHamiltonCanada

Personalised recommendations