Advertisement

Structured Matrices and Their Generalized Inverses

  • Guorong WangEmail author
  • Yimin Wei
  • Sanzheng Qiao
Chapter
Part of the Developments in Mathematics book series (DEVM, volume 53)

Abstract

A matrix is considered structured if its structure can be exploited to obtain efficient algorithms. Examples of structured matrices include Toeplitz, Hankel, circulant, Vandermonde, Cauchy, sparse. A matrix is called Toeplitz if its entries on the same diagonal are equal.

References

  1. 1.
    Y. Wei, J. Cai, M.K. Ng, Computing Moore-Penrose inverses of Toeplitz matrices by Newton’s iteration. Math. Comput. Model. 40(1–2), 181–191 (2004)MathSciNetCrossRefGoogle Scholar
  2. 2.
    T. Kailath, A.H. Sayed, Displacement structure: theory and applications. SIAM Rev. 37(3), 297–386 (1995)MathSciNetCrossRefGoogle Scholar
  3. 3.
    D. Bini, V. Pan, Polynomial and Matrix Computations: Volume 1 Fundamental Algorithms. (Birkhäuser, Boston, 1994)CrossRefGoogle Scholar
  4. 4.
    C.F. Van Loan, Computational Frameworks for the Fast Fourier Transform (SIAM, Philadelphia, 1992)CrossRefGoogle Scholar
  5. 5.
    G.H. Golub, C.F. Van Loan, Matrix Computations, 4th edn. (The Johns Hopkins University Press, Baltimore, MD, 2013)Google Scholar
  6. 6.
    V. Pan, R. Schreiber, An improved Newton iteration for the generalized inverse of a matrix, with applications. SIAM J. Sci. Stat. Comput. 12(5), 1109–1130 (1991)MathSciNetCrossRefGoogle Scholar
  7. 7.
    V. Pan, Y. Rami, X. Wang, Structured matrices and Newton’s iteration: unified approach. Linear Algebra Appl. 343–344, 233–265 (2002)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Y. Wei, M.K. Ng. Displacement structure of group inverses. Numer. Linear Algebra Appl. 12, 103–110 (2005)MathSciNetCrossRefGoogle Scholar
  9. 9.
    H. Diao, Y. Wei, S. Qiao, Displacement rank of the Drazin inverse. J. Comput. Appl. Math. 167(1), 147–161 (2004)MathSciNetCrossRefGoogle Scholar
  10. 10.
    J. Cai, Y. Wei, Displacement structure of weighted pseudoinverses. Appl. Math. Comput. 153(2), 317–335 (2004)MathSciNetzbMATHGoogle Scholar
  11. 11.
    G. Heinig, F. Hellinger, Displacement structure of pseudoinverse. Linear Algebra Appl. 197–198, 623–649 (1994)MathSciNetCrossRefGoogle Scholar
  12. 12.
    S. Li, Displacement structure of the generalized inverse \(A_{T, S}^{(2)}\). Appl. Math. Comput. 156, 33–40 (2004)MathSciNetzbMATHGoogle Scholar
  13. 13.
    P. Xie, Y. Wei, The stability of formulae of the Gohberg-Semencul-Trench type for Moore-Penrose and group inverses of toeplitz matrices. Linear Algebra Appl. 498, 117–135 (2016)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Y. Wei, H. Diao, On group inverse of singular Toeplitz matrices. Linear Algebra Appl. 399, 109–123 (2005)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Science Press 2018

Authors and Affiliations

  1. 1.Department of MathematicsShanghai Normal UniversityShanghaiChina
  2. 2.Department of MathematicsFudan UniversityShanghaiChina
  3. 3.Department of Computing and SoftwareMcMaster UniversityHamiltonCanada

Personalised recommendations