Advertisement

Reverse Order and Forward Order Laws for \(A_{T,S}^{(2)}\)

  • Guorong WangEmail author
  • Yimin Wei
  • Sanzheng Qiao
Chapter
Part of the Developments in Mathematics book series (DEVM, volume 53)

Abstract

The reverse order law for the generalized inverses of a matrix product yields a class of interesting fundamental problems in the theory of the generalized inverses of matrices. They have attracted considerable attention since the middle 1960s.

References

  1. 1.
    T.N.E. Greville, Note on the generalized inverse of a matrix product. SIAM Rev. 8, 518–521 (1966)MathSciNetCrossRefGoogle Scholar
  2. 2.
    R.E. Hartwig, The reverse order law revisited. Linear Algebra Appl. 76, 241–246 (1986)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Y. Tian, The Moore-Penrose inverse of a triple matrix product. Math. Pract. Theory 1, 64–70 (1992). in ChineseMathSciNetzbMATHGoogle Scholar
  4. 4.
    Y. Tian, Reverse order laws for the generalized inverse of multiple matrix products. Linear Algebra Appl. 211, 85–100 (1994)MathSciNetCrossRefGoogle Scholar
  5. 5.
    W. Sun, Y. Wei, Inverse order rule for weighted generalized inverse. SIAM J. Matrix Anal. Appl. 19, 772–775 (1998)MathSciNetCrossRefGoogle Scholar
  6. 6.
    G. Wang, J. Gao, Reverse order laws for weighted Moore-Penrose inverse of a triple matrix product. J. Shanghai Normal Univ. 29, 1–8 (2000). in ChineseGoogle Scholar
  7. 7.
    H. Tian, On the reverse order laws \((AB)^D = B^DA^D\). J. Math. Res. Expo. 19, 355–358 (1999)MathSciNetzbMATHGoogle Scholar
  8. 8.
    G. Wang, The reverse order law for Drazin inverses of multiple matrix products. Linear Algebra Appl. 348, 265–272 (2002)MathSciNetCrossRefGoogle Scholar
  9. 9.
    D.S. Djordjević, Unified approach to the reverse order rule for generalized inverses. Acta Sci. Math. (Szeged) 67, 761–776 (2001)MathSciNetzbMATHGoogle Scholar
  10. 10.
    A. Ben-Israel, T.N.E. Greville, Generalized Inverses: Theory and Applications, 2nd edn. (Springer, New York, 2003)Google Scholar
  11. 11.
    S.L. Campbell, C.D. Meyer Jr., Generalized Inverses of Linear Transformations (Pitman, London, 1979)Google Scholar
  12. 12.
    G. Marsaglia, G.P.H. Styan, Equalities and inequalities for ranks of matrices. Linear Multilinear Algebra 2, 269–292 (1974)MathSciNetCrossRefGoogle Scholar
  13. 13.
    R.E. Hartwig, Block generalized inverses. Arch. Ration. Mech. Anal. 61, 197–251 (1976)MathSciNetCrossRefGoogle Scholar
  14. 14.
    G. Wang, B. Zheng, The reverse order law for the generalized inverse \(A_{T, S}^{(2)}\). Appl. Math. Comput. 157, 295–305 (2004)MathSciNetzbMATHGoogle Scholar
  15. 15.
    W. Sun, Y. Wei, Triple reverse-order law for weighted generalized inverses. Appl. Math. Comput. 25, 221–229 (2002)MathSciNetzbMATHGoogle Scholar
  16. 16.
    M. Wei, Equivalent conditions for generalized inverses of products. Linear Algebra Appl. 266, 347–363 (1997)MathSciNetCrossRefGoogle Scholar
  17. 17.
    A.R. Depierro, M. Wei, Reverse order laws for reflexive generalized inverses of products of matrices. Linear Algebra Appl. 277, 299–311 (1996)MathSciNetCrossRefGoogle Scholar
  18. 18.
    M. Wei, Reverse order laws for generalized inverses of multiple matrix products. Linear Algebra Appl. 293, 273–288 (1999)MathSciNetCrossRefGoogle Scholar
  19. 19.
    H.J. Werner, When is \(B^-A^-\) a generalized inverse of \(AB\)? Linear Algebra Appl. 210, 255–263 (1994)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Q. Xu, C. Song, G. Wang, Multiplicative perturbations of matrices and the generalized triple reverse order law for the Moore-Penrose inverse. Linear Algebra Appl. 530, 366–383 (2017)MathSciNetCrossRefGoogle Scholar
  21. 21.
    A.R. De Pierro, M. Wei, Reverse order law for reflexive generalized inverses of products of matrices. Linear Algebra Appl. 277(1–3), 299–311 (1998)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Y. Takane, Y. Tian, H. Yanai, On reverse-order laws for least-squares g-inverses and minimum norm g-inverses of a matrix product. Aequ. Math. 73(1–2), 56–70 (2007)MathSciNetCrossRefGoogle Scholar
  23. 23.
    M. Wei, W. Guo, Reverse order laws for least squares g-inverses and minimum norm g-inverses of products of two matrices. Linear Algebra Appl. 342, 117–132 (2002)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Y. Tian, Reverse order laws for the Drazin inverse of a triple matrix product. Publ. Math. Debr. 63(3), 261–277 (2003)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Y. Tian, Reverse order laws for the weighted Moore-Penrose inverse of a triple matrix product with applications. Int. Math. J. 3(1), 107–117 (2003)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Science Press 2018

Authors and Affiliations

  1. 1.Department of MathematicsShanghai Normal UniversityShanghaiChina
  2. 2.Department of MathematicsFudan UniversityShanghaiChina
  3. 3.Department of Computing and SoftwareMcMaster UniversityHamiltonCanada

Personalised recommendations