Advertisement

Operator Drazin Inverse

  • Guorong WangEmail author
  • Yimin Wei
  • Sanzheng Qiao
Chapter
Part of the Developments in Mathematics book series (DEVM, volume 53)

Abstract

Let X be a Hilbert space and L(X) be the vector space of the linear operators from X into X. We denote the set of bounded linear operators from X into X by B(X). In this chapter, we will investigate the definition, basic properties, representation theorem and computational methods for the Drazin inverse of an operator \(T \in B(X)\), \(\mathcal {R}(T^k)\) is closed, where \(k=\mathrm {Ind}(T)\) is the index of T.

References

  1. 1.
    A.E. Taylor, D.C. Lay, Introduction to Functional Analysis, 2nd edn. (Wiley, New York-Chichester-Brisbane, 1980)Google Scholar
  2. 2.
    S. Qiao, The Drazin inverse of a linear operator on Banach spaces. J. Shanghai Normal Univ. 10, 11–18 (1981). in ChinesezbMATHGoogle Scholar
  3. 3.
    J. Kuang, The representation and approximation for Drazin inverses of linear operators. Numer. Math., J. Chinese Univ., 4, 97–106 (1982). in ChineseGoogle Scholar
  4. 4.
    Y. Wei, S. Qiao, The representation and approximation of the Drazin inverse of a linear operator in Hilbert space. Appl. Math. Comput. 138, 77–89 (2003)MathSciNetCrossRefGoogle Scholar
  5. 5.
    S.L. Campbell (ed.), Recent Application of Generalized Inverses (Pitman, London, 1982)Google Scholar
  6. 6.
    Y. Wei, A characterization and representation of the Drazin inverse. SIAM J. Matrix Anal. Appl. 17, 744–747 (1996)Google Scholar
  7. 7.
    Y. Wei, Representation and perturbation of the Drazin inverse in Banach space. Chinese J. Contemp. Math. 21, 39–46 (2000)MathSciNetGoogle Scholar
  8. 8.
    Y. Chen, Representation and approximation for the Drazin inverse \(A^{(d)}\). Appl. Math. Comput. 119, 147–160 (2001)MathSciNetzbMATHGoogle Scholar
  9. 9.
    B.A. Barnes, Common operator properties of the linear operators \(RS\) and \(SR\). Proc. Amer. Math. Soc. 126, 1055–1061 (1998)MathSciNetCrossRefGoogle Scholar
  10. 10.
    R. Walter, Functional Analysis, 2nd edn. (McGraw-Hill, New York, 1991)zbMATHGoogle Scholar
  11. 11.
    F. Chatelin, Spectral Approximation of Linear Operators (Academic Press, New York, 1983)zbMATHGoogle Scholar
  12. 12.
    C.D. Meyer, Limits and the index of a square matrix. SIAM J. Appl. Math. 26, 469–478 (1974)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Y. Wei, On the perturbation of the group inverse and oblique projection. Appl. Math. Comput. 98, 29–42 (1999)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Y. Wei, G. Wang, The perturbation theory for the Drazin inverse and its applications. Linear Algebra Appl. 258, 179–186 (1997)Google Scholar
  15. 15.
    J.J. Koliha, A generalized Drazin inverse. Glasgow Math. J. 38, 367–381 (1996)MathSciNetCrossRefGoogle Scholar
  16. 16.
    V. Rakočević, Y. Wei, The perturbation theory for the Drazin inverse and its applications II. J. Austral. Math. Soc. 70, 189–197 (2001)MathSciNetCrossRefGoogle Scholar
  17. 17.
    R.E. Cline, T.N.E. Greville, A Drazin inverse for rectangular matrices. Linear Algebra Appl. 29, 54–62 (1980)MathSciNetCrossRefGoogle Scholar
  18. 18.
    S. Qiao, The weighted Drazin inverse of a linear operator on Banach spaces and its approximation. Numer. Math., J. Chinese Univ., 3, 1–8 (1981). in ChineseGoogle Scholar
  19. 19.
    V. Rakočević, Y. Wei, The representation and approximation of the W-weighted Drazin inverse of linear operators in Hilbert spaces. Appl. Math. Comput. 141, 455–470 (2003)Google Scholar
  20. 20.
    A. Ben-Israel, T.N.E. Greville, Generalized Inverses: Theory and Applications, 2nd edn. (Springer, New York, 2003)Google Scholar
  21. 21.
    V. Rakočević, Y. Wei, A weighted Drazin inverse and applications. Linear Algebra Appl. 350, 25–39 (2002)MathSciNetCrossRefGoogle Scholar
  22. 22.
    G. Wang, Iterative methods for computing the Drazin inverse and the W-weighted Drazin inverse of linear operators based on functional interpolation. Numer. Math., J. Chinese Univ., 11, 269–280 (1989)Google Scholar
  23. 23.
    Y. Wei, A characterization and representation of the generalized inverse \(A_{T, S}^{(2)}\) and its applications. Linear Algebra Appl. 280, 87–96 (1998)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Y. Wei, Index splitting for Drazin inverse and the singular linear system. Appl. Math. Comput. 95, 115–124 (1998)Google Scholar
  25. 25.
    D. Cai, The Drazin generalized inverse of linear operators. J. Math. (Wuhan) 1, 81–88 (1985). in ChineseMathSciNetzbMATHGoogle Scholar
  26. 26.
    H. Du, C. Deng, The representation and characterization of Drazin inverses of operators on a Hilbert space. Linear Algebra Appl. 407, 117–124 (2005)MathSciNetCrossRefGoogle Scholar
  27. 27.
    P.S. Stanimirović, V.N. Katsikis, H. Ma, Representations and properties of the W-weighted Drazin inverse. Linear Multilinear Algebra 65(6), 1080–1096 (2017)MathSciNetCrossRefGoogle Scholar
  28. 28.
    C. Deng, H. Du, The reduced minimum modulus of Drazin inverses of linear operators on Hilbert spaces. Proc. Amer. Math. Soc. 134, 3309–3317 (2006)MathSciNetCrossRefGoogle Scholar
  29. 29.
    S.R. Caradus, Generalized Inverses and Operator Theory, vol. 50, Queen’s Papers in Pure and Applied Mathematics (Queen’s University, Kingston, Ontario, 1978)Google Scholar
  30. 30.
    S.L. Campbell, The Drazin inverse of an operator, in Recent Applications of Generalized Inverses, ed. by S.L. Cambpell (Pitman, 1982)Google Scholar
  31. 31.
    D. Huang, Group inverses and Drazin inverses over Banach algebras. Integral Equ. Oper. Theory 17, 54–67 (1993)MathSciNetCrossRefGoogle Scholar
  32. 32.
    N.C. González, J.J. Koliha, Y. Wei, On integral representations of the Drazin inverse in Banach algebras. Proc. Edinburgh Math. Soc. 45, 327–331 (2002)MathSciNetCrossRefGoogle Scholar
  33. 33.
    D.S. Djordjević, Y. Wei, Additive results for the generalized Drazin inverse. J. Austral. Math. Soc. 73, 115–125 (2002)MathSciNetCrossRefGoogle Scholar
  34. 34.
    J.J. Koliha, V. Rakčević, Differentiability of the g-Drazin inverse. Studia Math. 168(3), 193–201 (2005)MathSciNetCrossRefGoogle Scholar
  35. 35.
    C. Deng, Y. Wei, New additive results for the generalized Drazin inverse. J. Math. Anal. Appl. 370, 313–321 (2010)MathSciNetCrossRefGoogle Scholar
  36. 36.
    A. Dajić, J.J. Koliha, The weighted g-Drazin inverse for operators. J. Aust. Math. Soc. 82(2), 163–181 (2007)MathSciNetCrossRefGoogle Scholar
  37. 37.
    G. Wang, Y. Wei, Iterative methods for computing the W-weighted Drazin inverses of bounded linear operators in Banach spaces. J. Shanghai Normal Univ. 28, 1–7 (1999). in ChineseGoogle Scholar
  38. 38.
    G. Wang, Several approximate methods for the W-weighted Drazin inverse of bounded linear operator in Banach spaces. Numer. Math., J. Chinese Univ., 10, 76–81 (1988). in ChineseGoogle Scholar
  39. 39.
    N. Castro González, J.J. Koliha, Y. Wei, Error bounds for perturbation of the Drazin inverse of closed operators with equal spectral projections. Appl. Anal. 81(4), 915–928 (2002)MathSciNetCrossRefGoogle Scholar
  40. 40.
    X. Wang, H. Ma, R. Nikolov, A note on the perturbation bounds of W-weighted Drazin inverse. Linear Multilinear Algebra 64(10), 1960–1971 (2016)MathSciNetCrossRefGoogle Scholar
  41. 41.
    X. Wang, H. Ma, M. Cvetković-Ilić, A note on the perturbation bounds of W-weighted Drazin inverse of linear operator in Banach space. Filomat 31(2), 505–511 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Science Press 2018

Authors and Affiliations

  1. 1.Department of MathematicsShanghai Normal UniversityShanghaiChina
  2. 2.Department of MathematicsFudan UniversityShanghaiChina
  3. 3.Department of Computing and SoftwareMcMaster UniversityHamiltonCanada

Personalised recommendations