Advertisement

Moore-Penrose Inverse of Linear Operators

  • Guorong WangEmail author
  • Yimin Wei
  • Sanzheng Qiao
Chapter
Part of the Developments in Mathematics book series (DEVM, volume 53)

Abstract

Before Moore introduced the generalized inverse of matrices by algebraic methods, Fredholm, Hilbert, Schmidt, Bounitzky, Hurwitz and other mathematicians had studied the generalized inverses of integral operators and differential operators. Recently, due to the development of science and technology and the need for practical problems, researchers are very interested in the study of the generalized inverses of linear operators in abstract spaces.

References

  1. 1.
    C.W. Groetsch, Generalized Inverses of Linear Operators: Representation and Approximation (Dekker, New York, 1977)zbMATHGoogle Scholar
  2. 2.
    Y. Wei, S. Qiao, The representation and approximation of the Drazin inverse of a linear operator in Hilbert space. Appl. Math. Comput. 138, 77–89 (2003)MathSciNetzbMATHGoogle Scholar
  3. 3.
    V. Rakočević, Y. Wei, The representation and approximation of the W-weighted Drazin inverse of linear operators in Hilbert spaces. Appl. Math. Comput. 141, 455–470 (2003)MathSciNetzbMATHGoogle Scholar
  4. 4.
    A.E. Taylor, D.C. Lay, Introduction to Functional Analysis, 2nd edn. (Wiley, New York-Chichester-Brisbane, 1980)zbMATHGoogle Scholar
  5. 5.
    G.H. Hardy, Divergent Series (Oxford University Press, London, 1949)zbMATHGoogle Scholar
  6. 6.
    K.E. Atkinson, An Introduction to Numerical Analysis, 2nd edn. (Wiley, New York, 1989)zbMATHGoogle Scholar
  7. 7.
    S.L. Campbell (ed.), Recent Application of Generalized Inverses (Pitman, London, 1982)zbMATHGoogle Scholar
  8. 8.
    N. Du, Finite-dimensional approximation settings for infinite-dimensional Moore-Penrose inverses. SIAM J. Numer. Anal. 46, 1454–1482 (2008)MathSciNetCrossRefGoogle Scholar
  9. 9.
    J. Kuang, Approximate methods for generalized inverses of operators in Banach spaces. J. Comput. Math. 11, 323–328 (1993)MathSciNetzbMATHGoogle Scholar
  10. 10.
    T. Kato, Perturbation Theory for Linear Operators, 2nd edn. (Springer, New York, 1976)zbMATHGoogle Scholar
  11. 11.
    M.Z. Nashed (ed.), Generalized Inverses and Applications (Academic Press, New York, 1976)zbMATHGoogle Scholar
  12. 12.
    Y. Wang, Generalized Inverses of Linear Operators in Banach Space (Science Press, Beijing, 2005)Google Scholar
  13. 13.
    G. Chen, M. Wei, Y. Xue, Perturbation analysis of the least squares solution in Hilbert spaces. Linear Algebra Appl. 244, 69–80 (1996)MathSciNetCrossRefGoogle Scholar
  14. 14.
    G. Chen, Y. Xue, The expression of the generalized inverse of the perturbed operator under type I perturbation in Hilbert spaces. Linear Algebra Appl. 285, 1–6 (1998)MathSciNetCrossRefGoogle Scholar
  15. 15.
    G. Chen, Y. Xue, Perturbation analysis for the operator equation \(T\mathbf{x}=\mathbf{b}\) in Banach spaces. J. Math. Anal. Appl. 212, 107–125 (1997)MathSciNetCrossRefGoogle Scholar
  16. 16.
    J. Ding, J.L. Huang. Perturbation of generalized inverses in Hilbert spaces. J. Math. Anal. Appl. 198, 506–515 (1996)Google Scholar
  17. 17.
    J. Ding, J.L. Huang, On the continuity of generalized inverses of linear operators in Hilbert spaces. Linear Algebra Appl. 262, 229–242 (1997)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Y. Wei, G. Chen, Perturbation of least squares problem in Hilbert space. Appl. Math. Comput. 121, 171–177 (2001)MathSciNetGoogle Scholar
  19. 19.
    Y. Wei, J. Ding, Representations for Moore-Penrose inverse in Hilbert space. Appl. Math. Lett. 14, 599–604 (2001)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Q. Huang, J. Ma, Perturbation analysis of generalized inverses of linear operators in Banach spaces. Linear Algebra Appl. 389, 355–364 (2004)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Q. Huang, On perturbations for oblique projection generalized inverses of closed linear operators in Banach spaces. Linear Algebra Appl. 434(12), 2468–2474 (2011)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Y. Xue, Stable Perturbations of Operators and Related Topics (World Scientific Publishing Co Pte Ltd, Hackensack, NJ, 2012)CrossRefGoogle Scholar
  23. 23.
    Q. Xu, Y. Wei, Y. Gu, Sharp norm estimations for Moore-Penrose inverses of stable perturbations of Hilbert \(C^*\)-module operators. SIAM J. Numer. Anal. 47, 4735–4758 (2010)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Q. Huang, J. Ma, On the semi-continuity of generalized inverses in Banach algebras. Linear Algebra Appl. 419, 172–179 (2006)MathSciNetCrossRefGoogle Scholar
  25. 25.
    G. Chen, Y. Wei, Y. Xue, The generalized condition numbers of bounded linear operators in Banach spaces. J. Aust. Math. Soc. 76, 281–290 (2004)MathSciNetCrossRefGoogle Scholar
  26. 26.
    M.Z. Nashed, Inner, outer and generalized inverses in Banach and Hilbert spaces. Numer. Funct. Anal. Optim. 9, 261–325 (1987)MathSciNetCrossRefGoogle Scholar
  27. 27.
    X. Liu, Y. Yu, J. Zhong, Y. Wei, Integral and limit representations of the outer inverse in Banach space. Linear Multilinear Algebra 60(3), 333–347 (2012)MathSciNetCrossRefGoogle Scholar
  28. 28.
    H. Ma, H. Hudzik, Y. Wang, Continuous homogeneous selections of set-valued metric generalized inverses of linear operators in Banach spaces. Acta Math. Sin. (Engl. Ser.), 28(1), 45–56 (2012)MathSciNetCrossRefGoogle Scholar
  29. 29.
    H. Ma, S. Sun, Y. Wang, W. Zheng, Perturbations of Moore-Penrose metric generalized inverses of linear operators in Banach spaces. Acta Math. Sin. (Engl. Ser.), 30(7), 1109–1124 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Science Press 2018

Authors and Affiliations

  1. 1.Department of MathematicsShanghai Normal UniversityShanghaiChina
  2. 2.Department of MathematicsFudan UniversityShanghaiChina
  3. 3.Department of Computing and SoftwareMcMaster UniversityHamiltonCanada

Personalised recommendations