A Numerical Model for Error Analyses of Static Chamber Method Used at Landfill Site

Conference paper

Abstract

Static chamber method is widely used to measure emission of landfill gas by deploying the chamber at the surface of landfill cover soil. However, there will be errors between the measured fluxes and the real fluxes due to the increase of gas pressure in the chamber. A numerical model based on dust gas model was developed to investigate the factors affecting the errors. It is found that, height of static chamber is the most sensitive factor. When the height of chamber increases from 0.12 to 0.5 m, the error decreases from 32% to 10%. It will be easier for the chambers of smaller sizes to accumulate higher concentration and lead to greater errors. The proposed numerical model was successfully used in the analysis of the field static chamber tests carried out at the Xi’an landfill site. The evaluated errors for the field tests can be 30%. The model would be very useful for the error assessment of the static chamber tests.

Keywords

Static chamber Multi-component landfill gas Cover soil 

Notes

Acknowledgements

The financial supports from the National Natural Science Foundation of China (Grants Nos. 41672288, 51478427, 51625805, 51278452, and 51008274), and the Fundamental Research Funds for the Central Universities (Grant No. 2017QNA4028) are gratefully acknowledged.

References

  1. 1.
    Pihlatie, M.K., Christiansen, J.R., Aaltonen, H., Korhonen, J.F.J., Nordbo, A., Rasilo, T., Benanti, G., Giebels, M., Helmy, M., Sheehy, J., Jones, S., Juszczak, R., Klefoth, R., Lobo-do-Vale, R., Rosa, A.P., Schreiber, P., Serça, D., Vicca, S., Wolf, B., Pumpanen, J.: Comparison of static chambers to measure CH4 emissions from soils. Agric. For. Meteorol. 171–172, 124–136 (2013)CrossRefGoogle Scholar
  2. 2.
    Christiansen, J.R., Korhonen, J.F., Juszczak, R., Giebels, M., Pihlatie, M.: Assessing the effects of chamber placement, manual sampling and headspace mixing on CH4 flux in a laboratory experiment. Plant Soil 343(1–2), 171–185 (2011)CrossRefGoogle Scholar
  3. 3.
    Hutchinson, G.L., Livingston, G.P.: Soil-atmosphere gas exchange. In: Dane, J.H., Topp, G.C. (eds.) Methods of soil analysis. Part 4. SSSA Book Series 5, pp. 1159–1182. SSSA, Madison (2002)Google Scholar
  4. 4.
    Rochette, P., Eriksenhamel, N.S.: Chamber measurements of soil nitrous oxide flux: are absolute values reliable? Soil Sci. Soc. Am. J. 72(2), 331–342 (2008)CrossRefGoogle Scholar
  5. 5.
    Senevirathna, D.G.M., Achari, G., Hettiaratchi, J.P.A.: A laboratory evaluation of errors associated with the determination of landfill gas emissions. Can. J. Civ. Eng. 33(3), 240–244 (2006)CrossRefGoogle Scholar
  6. 6.
    Livingston, G.P., Hutchinson, G.L., Spartalian, K.: Trace gas emission in chambers: a non-steady-state diffusion model. Soil Sci. Soc. Am. J. 70(5), 1459–1469 (2006)CrossRefGoogle Scholar
  7. 7.
    Senevirathna, D.G.M., Achari, G., Hettiaratchi, J.P.A.: A mathematical model to estimate errors associated with closed flux chambers. Environ. Model. Assess. 12(1), 1–11 (2007)CrossRefGoogle Scholar
  8. 8.
    Sahoo, B.K., Mayya, Y.S.: Two dimensional diffusion theory of trace gas emission into soil chambers for flux measurements. Agric. For. Meteorol. 150(9), 1211–1224 (2010)CrossRefGoogle Scholar
  9. 9.
    Molins, S., Mayer, K.U.: Coupling between geochemical reactions and multicomponent gas and solute transport in unsaturated media: a reactive transport modeling study. Water Resour. Res. 43(5), 687–696 (2007)CrossRefGoogle Scholar
  10. 10.
    Binning, P.J., Postma, D., Russell, T.F., Wesselingh, J.A., Boulin, P.F.: Advective and diffusive contributions to reactive gas transport during pyrite oxidation in the unsaturated zone. Water Resour. Res. 43(2), 329–335 (2007)CrossRefGoogle Scholar
  11. 11.
    Mason, E.A., Malinauskas, A.P.: Gas Transport in Porous Media: The Dusty-Gas Model. Elsevier, Amsterdam (1983)Google Scholar
  12. 12.
    Clifford, K.H., Webb, S.W.: Gas transport in porous media. Encycl. Ecol. 14(8–9), 3576–3582 (2006)Google Scholar
  13. 13.
    Parker, J.C.: Multiphase flow and transport in porous media. Rev. Geophys. 27(3), 311–328 (1989)CrossRefGoogle Scholar
  14. 14.
    Thorstenson, D.C., Pollock, D.W.: Gas transport in unsaturated zones: Multicomponent systems and the adequacy of Ficks Law. Water Resour. Res. 25(3), 477–507 (1989)CrossRefGoogle Scholar
  15. 15.
    Moldrup, P., Olesen, T., Gamst, J., Schjønning, P., Yamaguchi, T., Rolston, D.E.: Predicting the gas diffusion coefficient in repacked soil: water-induced linear reduction model. Soil Sci. Soc. Am. J. 64(1), 1588–1594 (2000)CrossRefGoogle Scholar
  16. 16.
    Reid, R.C., Prausnitz, J.M., Sherwood, T.K.: The Properties of Gases and Liquids. McGrawHill, New York (1977)Google Scholar
  17. 17.
    Perera, M.D.N., Hettiaratchi, J.P.A., Achari, G.: A mathematical modeling approach to improve the point estimation of landfill gas surface emissions using the flux chamber technique. J. Environ. Eng. Sci. 1(1), 451–463 (2002)CrossRefGoogle Scholar
  18. 18.
    Zhan, L.T., Qiu, Q.W., Xu, W.J., et al.: Field measurement of gas permeability of compacted loess used as an earthen final cover for a municipal solid waste landfill. J. Zhejiang Univ.-Sci. A 17(7), 541–552 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Xinru Zuo
    • 1
  • Siliang Shen
    • 1
  • Haijian Xie
    • 1
  • Yunmin Chen
    • 1
  1. 1.College of Civil Engineering and ArchitectureZhejiang UniversityHangzhouChina

Personalised recommendations