Investigation of Local Processes and Spatial Scale Effects on Suffusion Susceptibility

  • Chuheng Zhong
  • Van Thao Le
  • Fateh Bendahmane
  • Didier Marot
  • Zhenyu Yin
Conference paper

Abstract

Many failures of earth structures are caused by the internal erosion occurring in these structures and their foundations. Suffusion, one of four internal erosion types, is a selective erosion of fine particles which move through the matrix formed by the coarser particles. In literature, most investigations on suffusion took it as a single erosion process. However, the suffusion is a complex process due to the combination of three processes: detachment, transport and possible filtration of finer fraction. The influence of the local processes on suffusion susceptibility, especially the filtration process, is not well established. The objectives of this study are investigating the filtration process by verifying results of filtration tests with the basic filtration equation and analyzing the influence of spatial scale effects on the filtration process by performing tests with two different-sized devices. The filtration tests results show the consistency with the basic filtration equation on suspended particle concentration. And suffusion tests indicate the significant effect of specimen size on filtration process. The interpretative method based on the energy expended by the seepage flow and the cumulative loss dry mass is more appropriate with filtration process than those based on the geometric shape of the particles.

Keywords

Filtration process Suffusion Spatial scale effect 

References

  1. 1.
    Foster, M., Fell, R., Spannagle, M.: The statistics of embankment dam failures and accidents. Can. Geotech. J. 37(5), 1000–1024 (2000)CrossRefGoogle Scholar
  2. 2.
    Bonelli, S.: Erosion in Geomechanics Applied to Dams and Levees, 1st edn. Wiley-ISTE, London (2013)CrossRefGoogle Scholar
  3. 3.
    Wan, C.F., Fell, R.: Assessing the potential of internal instability and suffusion in embankment dams and their foundations. J. Geotech. Geoenviron. Eng. 134(3), 401–407 (2008)CrossRefGoogle Scholar
  4. 4.
    Chang, D.S., Zhang, L.M.: Extended internal stability criteria for soils under seepage. Soils Found. 53(4), 569–583 (2013)CrossRefGoogle Scholar
  5. 5.
    Kenney, T.C., Lau, D.: Internal stability of granular filters. Can. Geotech. J. 22(2), 215–225 (1985)CrossRefGoogle Scholar
  6. 6.
    Indraratna, B., Israr, J., Rujikiatkamjorn, C.: Geometrical method for evaluating the internal instability of granular filters based on constriction size distribution. J. Geotech. Geoenviron. Eng. 141(10), 04015045 (2015)CrossRefGoogle Scholar
  7. 7.
    Bendahmane, F., Marot, D., Alexis, A.: Experimental parametric study of suffusion and backward erosion. J. Geotech. Geoenviron. Eng. 134(1), 57–67 (2008)CrossRefGoogle Scholar
  8. 8.
    Marot, D., Bendahmane, F., Rosquoet, F., Alexis, A.: Internal flow effects on isotropic confined sand-clay mixtures. Soil Sediment Contam. 18(3), 294–306 (2009)CrossRefGoogle Scholar
  9. 9.
    Nguyen, H.H., Marot, D., Bendahmane, F.: Erodibility characterisation for suffusion process in cohesive soil by two types of hydraulic loading. La Houille Blanche 6, 54–60 (2012)CrossRefGoogle Scholar
  10. 10.
    Iwasaki, T., Slade, J.J., Stanley, W.E.: Some notes on sand filtration [with Discussion]. J. (American Water Works Association) 29(10), 1591–1602 (1937)Google Scholar
  11. 11.
    Marot, D., Rochim, A., Nguyen, H.H., Bendahmane, F., Sibille, L.: Assessing the susceptibility of gap-graded soils to internal erosion: proposition of a new experimental methodology. Nat. Hazards 83(1), 365–388 (2016)CrossRefGoogle Scholar
  12. 12.
    Sail, Y., Marot, D., Sibille, L., Alexis, A.: Suffusion tests on cohesionless granular matter. Eur. J. Environ. Civil Eng. 15(5), 799–817 (2011)Google Scholar
  13. 13.
    Rochim, A., Marot, D., Sibille, L., Le, V.T.: Effects of hydraulic loading history on suffusion susceptibility of cohesionless soils. J. Geotech. Geoenviron. Eng. 143(7), 04017025 (2017)CrossRefGoogle Scholar
  14. 14.
    Skempton, A.W., Brogan, J.M.: Experiments on piping in sandy gravels. Géotechnique 44(3), 449–460 (1994)CrossRefGoogle Scholar
  15. 15.
    Chang, C.S., Yin, Z.-Y.: Micromechanical modeling for behavior of silty sand with influence of fine content. Int. J. Solids Struct. 48(19), 2655–2667 (2011)CrossRefGoogle Scholar
  16. 16.
    Yin, Z.-Y., Zhao, J., Hicher, P.Y.: A micromechanics-based model for sand-silt mixtures. Int. J. Solids Struct. 51(6), 1350–1363 (2014)CrossRefGoogle Scholar
  17. 17.
    Yin, Z.-Y., Huang, H.W., Hicher, P.Y.: Elastoplastic modeling of sand-silt mixtures. Soils Found. 56(3), 520–532 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Chuheng Zhong
    • 1
  • Van Thao Le
    • 1
    • 2
  • Fateh Bendahmane
    • 1
  • Didier Marot
    • 1
  • Zhenyu Yin
    • 3
  1. 1.Université de Nantes, Institut de Recherche en Génie Civil et MécaniqueST-NazaireFrance
  2. 2.The University of Danang - University of Science and TechnologyDa NangVietnam
  3. 3.Ecole Centrale de Nantes, Institut de Recherche en Génie Civil et MécaniqueNantesFrance

Personalised recommendations