Quantitative Determination Approach of Rock Micro Tensile Strength Based on Particle Flow Code

  • Xinrong Liu
  • Luli Miao
  • Yan Fu
  • Wen Yuan
  • Zijuan Wang
Conference paper


Rock Particle Flow Code (PFC) model has numerous micro parameters, and its quantitative determination is completed by try and error, which consumes a large amount of time and efforts of researchers. Under this background, the quantitative determination approach of rock micro parameters is of significant importance. This study proposes a simplified model based on PFC2D to analyze the stress mechanism from the perspectives of force balance and deformation equilibrium, and explores the theoretical relation between macro tensile strength and micro parameters. The direct tensile test is simulated by PFC2D to explore the influence of contact normal bond strength (micro tensile strength) σcn, particle size (maximum particle diameter Dmax, and particle diameter ratio Dmax/Dmin) and normal to shear stiffness ratio kn/ks on macro tensile strength. Based on the results of theoretical analysis and statistical analysis, the quantitative determination approach of micro tensile strength in direct tension test is determined.


Particle Flow Code (PFC) Contact Bond Model (CBM) Tensile strength Particle size Stiffness ratio 


  1. 1.
    Potyondy, D.O., Cundall, P.A.: A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 41(8), 1329–1364 (2016)CrossRefGoogle Scholar
  2. 2.
    Itasca: PFC2D (Particle Flow Code in 2 Dimensions) version 3.1, Minneapolis (2004)Google Scholar
  3. 3.
    Huang, H.Y.: Discrete Element Modeling of Tool Rock Interaction. University of Minnesota, Minnesota (1999)Google Scholar
  4. 4.
    Yang, B., Jiao, Y., Lei, S.: A study on the effects of microparameters on macroproperties for specimens created by bonded particles. Eng. Comput. 23(6), 607–631 (2006)CrossRefGoogle Scholar
  5. 5.
    Jeoungseok, Y.: Application of experimental design and optimization to PFC model calibrationin uniaxial compression simulation. Int. J. Rock Mech. Min. Sci. 44(5), 871–889 (2007)Google Scholar
  6. 6.
    Sun, Q.C., Hou, M.Y., Jing, F.: Physics and Mechanics of Granular Materials. Science Press, Beijing (2011)Google Scholar
  7. 7.
    Fu, Y.: Study on Water-rock interaction with the Cyclic Drying-wetting effect on rock. China: Chongqing University (2010)Google Scholar
  8. 8.
    Zhao, G.Y., Dai, B., Ma, C.: Study of effects of microparameters on macroproperts for Parallel Bonded Model. Chin. J. Rock Mech. Eng. 31(07), 1491–1498 (2012)Google Scholar
  9. 9.
    Li, J.Z., Xu, J.M., Huang, D.Y.: Particle flow simulation of deformation and failure mechanism of granite based on actual distributions od meso-compositions. J. Eng. Geol. 23, 84–89 (2015)Google Scholar
  10. 10.
    Cho, N., Martin, C.D., Sego, D.C.: A clumped particle model for rock. Int. J. Rock Mech. Min. Sci. 44(7), 997–1010 (2007)CrossRefGoogle Scholar
  11. 11.
    Haeri, H., Sarfarazi, V.: Numerical simulation of tensile failure of concrete using Particle Flow Code (PFC). Comput. Concr. 18(1), 39–51 (2016)CrossRefGoogle Scholar
  12. 12.
    Yang, S.Q., Huang, Y.H., Liu, X.R.: Particle flow analysis on tensile strength and crack coalescence behavior of brittle rock containing two pre-existing fissures. J. China Univ. Min. Technol. 43(2), 220–226 (2014)Google Scholar
  13. 13.
    Yang, S.Q., Huang, Y.H.: Particle flow study on strength and meso-mechanism of Brazilian splitting test for jointed rock mass. Acta Mech. Sin. 30(4), 547–558 (2014)CrossRefGoogle Scholar
  14. 14.
    Fairhurst, C.E., Hudson, J.A.: Draft ISRM suggested method for the complete stress-strain curve for intact rock in uniaxial compression. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 36(3), 281–289 (1999)Google Scholar
  15. 15.
    Zhang, X.T., Zhang, Q.Y., Yuan, S.B., et al.: Development of test device for direct axial tension on rock and its application. Chin. J. Rock Mech. Eng. 33(12), 2517–2523 (2014)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Xinrong Liu
    • 1
  • Luli Miao
    • 1
  • Yan Fu
    • 2
    • 3
  • Wen Yuan
    • 1
  • Zijuan Wang
    • 1
  1. 1.School of Civil EngineeringChongqing UniversityChongqingChina
  2. 2.School of Construction Management and Real EstateChongqing UniversityChongqingChina
  3. 3.Chongqing University Center for Construction Economics and ManagementChongqingChina

Personalised recommendations