Skip to main content

Data and Energy Integrated Communication Networks: An Overview

  • Chapter
  • First Online:
Data and Energy Integrated Communication Networks

Part of the book series: SpringerBriefs in Computer Science ((BRIEFSCOMPUTER))

  • 401 Accesses

Abstract

In order to address the energy supply issue of communication devices in the imminent 5G and IoT era, wireless charging techniques have attracted much attention both from the academic and industrial communities. Thankfully, RF signals are capable of delivering energy over distances. However, allowing RF signal based wireless energy transfer (WET) may impair the wireless information transfer (WIT) operating in the same spectral band. Hence, it is crucial to coordinate and balance WET and WIT for simultaneous wireless information and power transfer (SWIPT) , which evolves to Data and Energy Integrated communication Networks (DEINs) . To this end, a ubiquitous IDEN architecture is characterised by summarising its natural heterogeneity and by synthesising a diverse range of integrated WET and WIT scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Zanella, N. Bui, A. Castellani, L. Vangelista, M. Zorzi, Internet of things for smart cities. IEEE Internet Things J. 1(1), 22–32 (2014)

    Article  Google Scholar 

  2. A. Alrawais, A. Alhothaily, C. Hu, X. Cheng, Fog computing for the internet of things: security and privacy issues. IEEE Internet Comput. 21(2), 34–42 (2017)

    Article  Google Scholar 

  3. B.H. Choi, V.X. Thai, E.S. Lee, J.H. Kim, C.T. Rim, Dipole-coil-based wide-range inductive power transfer systems for wireless sensors. IEEE Trans. Ind. Electron. 63(5), 3158–3167 (2016)

    Article  Google Scholar 

  4. V. Jiwariyavej, T. Imura, Y. Hori, Coupling coefficients estimation of wireless power transfer system via magnetic resonance coupling using information from either side of the system. IEEE J. Emerg. Sel. Top. Power Electron. 3(1), 191–200 (2015)

    Article  Google Scholar 

  5. P.S. Riehl, A. Satyamoorthy, H. Akram, Y.C. Yen, J.C. Yang, B. Juan, C.M. Lee, F.C. Lin, V. Muratov, W. Plumb, P.F. Tustin, Wireless power systems for mobile devices supporting inductive and resonant operating modes. IEEE Trans. Microw. Theory Tech. 63(3), 780–790 (2015)

    Article  Google Scholar 

  6. M. Pinuela, D.C. Yates, S. Lucyszyn, P.D. Mitcheson, Maximizing DC-to-load efficiency for inductive power transfer. IEEE Trans. Power Electron. 28(5), 2437–2447 (2013)

    Article  Google Scholar 

  7. H. Liu, Maximizing efficiency of wireless power transfer with resonant inductive coupling (2011)

    Google Scholar 

  8. C. Zheng, H. Ma, J.S. Lai, L. Zhang, Design considerations to reduce gap variation and misalignment effects for the inductive power transfer system. IEEE Trans. Power Electron. 30(11), 6108–6119 (2015)

    Article  Google Scholar 

  9. Z. Yan, Y. Li, C. Zhang, Q. Yang, Influence factors analysis and improvement method on efficiency of wireless power transfer via coupled magnetic resonance. IEEE Trans. Magn. 50(4), 1–4 (2014)

    Google Scholar 

  10. J.M. Miller, O.C. Onar, M. Chinthavali, Primary-side power flow control of wireless power transfer for electric vehicle charging. IEEE J. Emerg. Sel. Top. Power Electron. 3(1), 147–162 (2015)

    Article  Google Scholar 

  11. A. Kurs, A. Karalis, R. Moffatt, J.D. Joannopoulos, P. Fisher, M. Soljačić, Wireless power transfer via strongly coupled magnetic resonances. Science 317(5834), 83–86 (2007)

    Article  MathSciNet  Google Scholar 

  12. H. Hwang, J. Moon, B. Lee, C.H. Jeong, S.W. Kim, An analysis of magnetic resonance coupling effects on wireless power transfer by coil inductance and placement. IEEE Trans. Consum. Electron. 60(2), 203–209 (2014)

    Article  Google Scholar 

  13. M.Q. Nguyen, D. Plesa, S. Rao, J.C. Chiao, A multi-input and multi-output wireless energy transfer system, in 2014 IEEE MTT-S International Microwave Symposium (IMS2014) (2014), pp. 1–3

    Google Scholar 

  14. M.Q. Nguyen, Y. Chou, D. Plesa, S. Rao, J.C. Chiao, Multiple-inputs and multiple-outputs wireless power combining and delivering systems. IEEE Trans. Power Electron. 30(11), 6254–6263 (2015)

    Article  Google Scholar 

  15. J.H. Kim, H.Y. Yu, C. Cha, Efficiency enhancement using beam forming array antenna for microwave-based wireless energy transfer, in 2014 IEEE Wireless Power Transfer Conference (2014), pp. 288–291

    Google Scholar 

  16. W.C. Brown, R.H. George, Rectification of microwave power. IEEE Spectr. 1(10), 92–97 (1964)

    Article  Google Scholar 

  17. W.C. Brown, The history of power transmission by radio waves. IEEE Trans. Microw. Theory Tech. 32(9), 1230–1242 (1984)

    Article  Google Scholar 

  18. W.C. Brown, Status of the microwave power transmission components for the solar power satellite. IEEE Trans. Microw. Theory Techn. 29(12), 1319–1327 (1981)

    Article  Google Scholar 

  19. W. Brown, Recent advances in key microwave components that impact the design and deployment of the solar power satellite system, in 1984 Antennas and Propagation Society International Symposium, vol. 22 (1984), pp. 339–340

    Google Scholar 

  20. R.M. Dickinson, Performance of a high-power, 2.388-GHz receiving array in wireless power transmission over 1.54 km, in 1976 IEEE-MTT-S International Microwave Symposium (1976), pp. 139–141

    Google Scholar 

  21. P.S. Yedavalli, T. Riihonen, X. Wang, J.M. Rabaey, Far-field RF wireless power transfer with blind adaptive beamforming for internet of things devices. IEEE Access 5, 1743–1752 (2017)

    Article  Google Scholar 

  22. T. Mitani, S. Kawashima, T. Nishimura, Analysis of voltage doubler behavior of 2.45-GHz voltage doubler-type rectenna. IEEE Trans. Microw. Theory Tech. 65(4), 1051–1057 (2017)

    Article  Google Scholar 

  23. X. Chu, Q. Sun, J. Wang, P. Lu, W.X.X. Xu, Generating a Bessel-Gaussian beam for the application in optical engineering. Scientific Reports 5(6), 18665 (2015)

    Google Scholar 

  24. N. Moraitis, P.N. Vasileiou, C.G. Kakoyiannis, A. Marousis, A.G. Kanatas, P. Constantinou, Radio planning of single-frequency networks for broadcasting digital TV in mixed-terrain regions. IEEE Antennas Propag. Mag. 56(6), 123–141 (2014)

    Article  Google Scholar 

  25. M. Morelli, M. Moretti, A maximum likelihood approach for SSS detection in LTE systems. IEEE Trans. Wirel. Commun. 16(4), 2423–2433 (2017)

    Article  Google Scholar 

  26. L. Sanabria-Russo, J. Barcelo, B. Bellalta, F. Gringoli, A high efficiency MAC protocol for WLANs: providing fairness in dense scenarios. IEEE/ACM Trans. Netw. 25(1), 492–505 (2017)

    Article  Google Scholar 

  27. R. Ford, M. Zhang, M. Mezzavilla, S. Dutta, S. Rangan, M. Zorzi, Achieving ultra-low latency in 5G millimeter wave cellular networks. IEEE Commun. Mag. 55(3), 196–203 (2017)

    Article  Google Scholar 

  28. T. Zhang, L. An, Y. Chen, K.K. Chai, Aggregate interference statistical modeling and user outage analysis of heterogeneous cellular networks, in 2014 IEEE International Conference on Communications (ICC) (2014), pp. 1260–1265

    Google Scholar 

  29. J. Hu, L.L. Yang, L. Hanzo, Distributed multistage cooperative-social-multicast-aided content dissemination in random mobile networks. IEEE Trans. Veh. Technol. 64(7), 3075–3089 (2015)

    Article  Google Scholar 

  30. J. Hu, L.L. Yang, H.V. Poor, L. Hanzo, Bridging the social and wireless networking divide: information dissemination in integrated cellular and opportunistic networks. IEEE Access 3, 1809–1848 (2015)

    Article  Google Scholar 

  31. J. Hu, L.L. Yang, L. Hanzo, Delay analysis of social group multicast-aided content dissemination in cellular system. IEEE Trans. Commun. 64(4), 1660–1673 (2016)

    Article  Google Scholar 

  32. J. Hu, L.L. Yang, L. Hanzo, Energy-efficient cross-layer design of wireless mesh networks for content sharing in online social networks. IEEE Trans. Veh. Technol. PP(99), 1–1 (2017)

    Google Scholar 

  33. K. Yang, Q. Yu, S. Leng, B. Fan, F. Wu, Data and energy integrated communication networks for wireless big data. IEEE Access 4, 713–723 (2016)

    Article  Google Scholar 

  34. M.D. Renzo, W. Lu, System-Level analysis and optimization of cellular networks with simultaneous wireless information and power transfer: Stochastic geometry modelling. IEEE Trans. Veh. Technol. 66(3), 2251–2275 (2017)

    Article  Google Scholar 

  35. D.H. Chen, Y.C. He, Full-Duplex secure communications in cellular networks with downlink wireless power transfer. IEEE Trans. Commun. 66(1), 265–277 (2018)

    Article  Google Scholar 

  36. J. An, K. Yang, J. Wu, N. Ye, S. Guo, Z. Liao, Achieving sustainable ultra-dense heterogeneous networks for 5g. IEEE Commun. Mag. 55(12), 84–90 (2017)

    Article  Google Scholar 

  37. X. Liu, Z. Li, C. Wang, Secure decode-and-forward relay SWIPT systems with power splitting scheme. IEEE Trans. Veh. Technol. pp. 1–1 (2018)

    Google Scholar 

  38. Y. Zhao, D. Wang, J. Hu, K. Yang, H-AP Deployment for joint wireless information and energy transfer in smart cities. IEEE Trans. Veh. Technol. pp. 1–1 (2018)

    Google Scholar 

  39. J. Hu, Y. Xue, Q. Yu, K. Yang, A joint time allocation and UE scheduling algorithm for full-duplex wireless powered communication networks. in 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall) (2017), pp. 1–5

    Google Scholar 

  40. K. Lv, J. Hu, Q. Yu, K. Yang, Throughput maximization and fairness assurance in data and energy integrated communication networks. IEEE Internet of Things Journal, 5(2), 636–644 (2018)

    Article  Google Scholar 

  41. Y. Ye, Y. Li, D. Wang, F. Zhou, R.Q. Hu, H. Zhang, Optimal transmission schemes for DF relaying networks using SWIPT. IEEE Trans. Veh. Technol. pp. 1–1 (2018)

    Google Scholar 

  42. Y. Zeng, B. Clerckx, R. Zhang, Communications and signals design for wireless power transmission. IEEE Trans. Commun. 65(5), 2264–2290 (2017)

    Article  Google Scholar 

  43. Q. Li, Q. Zhang, J. Qin, Robust tomlinson-harashima precoding with gaussian uncertainties for SWIPT in MIMO broadcast channels. IEEE Trans. Signal Process. 65(6), 1399–1411 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Hu .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd., part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hu, J., Yang, K. (2018). Data and Energy Integrated Communication Networks: An Overview. In: Data and Energy Integrated Communication Networks. SpringerBriefs in Computer Science. Springer, Singapore. https://doi.org/10.1007/978-981-13-0116-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0116-2_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0115-5

  • Online ISBN: 978-981-13-0116-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics