Skip to main content

Study on the Rock Damage Characteristics Based on SEM Test

  • Conference paper
  • First Online:
Proceedings of GeoShanghai 2018 International Conference: Rock Mechanics and Rock Engineering (GSIC 2018)

Included in the following conference series:

Abstract

The meso morphologies of the fracture surface of cracked rock mass indirectly reflects its internal damage evolution process. In this paper, the SEM scanning images of the specimens with different pre-existing cracks under uniaxial compression are post processed by MATLAB and IPP. Moreover, the damage evolution of meso structure in the failure process of the specimen is quantitatively studied, which establishes the relationship between macroscopic failure and meso mechanism. It is found that when the crack initiates, the damage degree of meso structure in the crack tips decreases with the increase of the inclination angle of pre-existing crack, and the weakening effect of tensile cracks on the strength of specimen is greater than that of shear cracks. Subsequently, when the crack propagates, the inclination angle of pre-existing crack has little influence on the damage rate of the meso structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kachnov, M.: Effective elastic properties of cracked solids: critical review of some basic concepts. Appl. Mech. Rev. 45(8), 304–355 (1992)

    Article  Google Scholar 

  2. Jiang, W., Deng, J., Li, Y.: Study on constitutive model of rock damage based on lognormal distribution. Chin. J. Undergr. Space Eng. 6(6), 1190–1194 (2010)

    Google Scholar 

  3. Zhang, M., Wang, F., Yang, Q.: Statistical damage constitutive model for rocks based on triaxial compression tests. Chin. J. Geotech. Eng. 35(11), 1965–1971 (2013)

    Google Scholar 

  4. Lemaitre, J.: A course on damage mechanics, pp. 29–30. Springer, Berlin (1992)

    Book  Google Scholar 

  5. Krajcinovic, D.: Statistical aspects of the continuous damage theory. Int. J. Solids Struct. 18(7), 551–562 (1982)

    Article  Google Scholar 

  6. Zhao, Y.L., Wang, W.J., Huang, Y.H., et al.: Coupling analysis of seepage-damage-fracture in fractured rock mass and engineering application. Chin. J. Geotech. Eng. 32(1), 24–32 (2010)

    Google Scholar 

  7. Yang, S.Q., Dai, Y.H., Han, L.J., et al.: Uniaxial compression experimental research on deformation and failure properties of brittle marble specimen with pre-existing fissures. Chin. J. Rock Mech. Eng. 28(12), 2391–2404 (2009)

    Google Scholar 

  8. Wong, L.N.Y., Li, H.Q.: Numerical study on coalescence of two coplanar pre-existing flaws in rock. Int. J. Solids Struct. 50, 3685–3706 (2013)

    Article  Google Scholar 

  9. Zhao, C., Yu, Z.M., Wang, W.D., et al.: Meso-experiment study on feature mechanism of rock based on uniaxial compression test. Chin. J. Rock Mech. Eng. 35(12), 2490–2498 (2016)

    Google Scholar 

  10. Zhao, C., Ma, C., Zhao, C., et al.: Simulation on crack propagation of rock-like specimen using strain criterion (2017). https://doi.org/10.1080/19648189.2017.1359677

    Article  Google Scholar 

  11. Zhao, C., Liu, F., Tian, J., et al.: Study on single crack propagation and damage evolution mechanism of rock-like materials under uniaxial compression. Chin. J. Rock Mech. Eng. 35(2) (2016)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of the National Natural Science Foundation of China (No. 41202193 and No. 41572262), Innovation Program of Shanghai Municipal Education Commission (No. 15ZZ016), and Shanghai Rising-Star Program (No. 17QC1400600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, Y., Zhao, C., Zhao, C., Xie, J. (2018). Study on the Rock Damage Characteristics Based on SEM Test. In: Zhang, L., Goncalves da Silva, B., Zhao, C. (eds) Proceedings of GeoShanghai 2018 International Conference: Rock Mechanics and Rock Engineering. GSIC 2018. Springer, Singapore. https://doi.org/10.1007/978-981-13-0113-1_32

Download citation

Publish with us

Policies and ethics