Skip to main content

Experimental Study on the Rheological Property of Compacted Clay and Its Influence on the Stress and Deformation of the Core-Wall Dam

  • Conference paper
  • First Online:
Proceedings of GeoShanghai 2018 International Conference: Rock Mechanics and Rock Engineering (GSIC 2018)

Included in the following conference series:

  • 1989 Accesses

Abstract

The secondary consolidation rate of compacted clay and rockfills has been proven to be relatively close, however, only the rheological property of the rockfill is considered in commonly used finite element analysis of core-wall dams. Therefore, the rheological property of the compacted clay and its influence on the stress and deformation of the Core-wall dam is discussed in this paper. The coefficient of secondary consolidation of unsaturated clay is significantly larger than that of saturated clay, and when the clay is saturated, the coefficient of secondary consolidation increases with the increasing loading. Both the unidirectional compression and triaxial compression rheological tests can be used to determine the rheological parameters and the results are relatively close. The finite element analysis indicates that the rheological deformation of clay core-wall has a considerable influence on the stress and deformation of the dam, e.g., causing higher stress levels and larger settlement especially around the core-wall. Hence, the rheological property of clay core-wall cannot be ignored in finite element analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guo, W.L., Zhu, J.G., Peng, W.M.: Study on dilatancy equation and generalized plastic constitutive model for coarse-grained soil. Chin. J. Geotech. Eng. (2017). http://kns.cnki.net/kcms/detail/32.1124.TU.20170630.1121.008.html. (in Chinese)

  2. Feng, B.L., Niu, J.D., Yang, Q.F.: The coefficient of secondary consolidation of soft clay determined by full automatic consolidation test system. Geotech. Invest. Surv. 39(3), 11–14 (2011). (in Chinese)

    Google Scholar 

  3. Wang, J.J., Zhang, H.P., Tang, S.C., Liang, Y.: Effects of particle size distribution on shear strength of accumulation soil. J. Geotech. Geoenviron. Eng. 139(11), 1994–1997 (2013)

    Article  Google Scholar 

  4. Chen, L.H., Chen, Z.Y., Zhang, J.P., et al.: Study on high pore pressure in clay core-wall of earth dam in Xiaolangdi Project. J. Hydraul. Eng. 36(2), 219–224 (2005). (in Chinese)

    Google Scholar 

  5. Murdoch, L.C.: Mechanical analysis of idealized shallow hydraulic fracture. J. Geotech. Geoenviron. Eng. 128(6), 488–495 (2002)

    Article  Google Scholar 

  6. MacDonald, T.C., Langridge-Monopolis, J.: Breaching charateristics of dam failures. J. Hydraul. Eng. 110(5), 567–586 (1984)

    Article  Google Scholar 

  7. Feng, X.Y., Xu, Z.P.: Centrifugal model study on mechanism of hydraulic fracturing of clay core-wall in rockfill dams. J. Hydraul. Eng. 40(10), 1259–1263 (2009)

    Google Scholar 

  8. Guo, W.L., Zhu, J.G., Yin, J.H., et al.: Investigation into the effects of the thickness of a hollow-cylinder soil specimen on the stress distributions in triaxial torsional shear testing. Geotech. Test. J. 39(5), 786–794 (2016)

    Article  Google Scholar 

  9. Li, Y., Xia, C.C.: Time-dependent tests on intact rocks in uniaxial compression. Int. J. Rock Mech. Min. Sci. 37(3), 467–475 (2000)

    Article  Google Scholar 

  10. Xia, C.C., Wang, X.D., Xu, C.B., et al.: Method to identify rheological models by unified rheological model theory and case study. Chin. J. Rock Mech. Eng. 27(8), 1594–1600 (2008). (in Chinese)

    Google Scholar 

  11. Zhao, Y.L., Cao, P., Wang, W., et al.: Viscoelasto-plastic rheological experiment under circular increment step load and unload and nonlinear creep model of soft rocks. J. Cent. South Univ. Technol. 16(3), 488–494 (2009)

    Article  Google Scholar 

  12. Zhao, Y.L., Cao, P., Wang, W.: Rock cracks subcritical propagation test and compression-shear rheological fracture model. J. Cent. South Univ. (Sci. Technol.) 45(1), 276–286 (2014)

    Google Scholar 

  13. Shen, Z.J.: Back analysis of deformation of Lubuge earth core rockfill dam. Chin. J. Rock Mech. Eng. 16(3), 1–13 (1994). (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Geng, Zz., Xu, K., Wu, Z., Ji, Ey. (2018). Experimental Study on the Rheological Property of Compacted Clay and Its Influence on the Stress and Deformation of the Core-Wall Dam. In: Zhang, L., Goncalves da Silva, B., Zhao, C. (eds) Proceedings of GeoShanghai 2018 International Conference: Rock Mechanics and Rock Engineering. GSIC 2018. Springer, Singapore. https://doi.org/10.1007/978-981-13-0113-1_22

Download citation

Publish with us

Policies and ethics