Skip to main content

Preparation and Properties of Interconnected NiS Nanoparticle Network with Amphiphilic Polymers

  • Conference paper
  • First Online:
Advanced Functional Materials (CMC 2017)

Included in the following conference series:

  • 3213 Accesses

Abstract

Low-dimensional functional nanocomposite with visible light activity is one of hot-spots fields in chemistry, physics and materials according to the demands of new energy and environmental fields. To simulate the process of photosynthesis of nanomaterials, in this study, NiS nanomaterials were synthesized with amphiphilic polymers as soft template. The nanocomposite with integrated multi-functionalities were characterized with several approaches. The photoconductive responses to weak visible light and 808 nm NIR (near infrared) were studied based on interdigital electrodes of Au on flexible PET (polyethylene terephthalate) film substrate with casting method. The results indicated that the resulting NiS nanocomposite is core/shell structure, showing interconnected network, looks like honeycomb, and the nanocomposite with integrated multi-functionalities exhibited photo-switching behaviors, the ratio of On/Off was 2–3 orders of magnitudes, the response and recovery were very rapidly. It would be developed the intelligent nanocomposites with external stimuli responses, light detector to NIR, biomimetic materials, nano-machine controlled by light, environmental fields, and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. Gurylev, C. Su, T. Perng, Hydrogenated ZnO nanorods with defect-induced visible light-responsive photoelectrochemical performance. Appl. Surf. Sci. 411, 279–284 (2017)

    Article  CAS  Google Scholar 

  2. I. Schmidt, A. Gad, G.R Scholz, H. Boht, M. Martens, M. Schilling, H.S. Wasisto, A. Waag, U. Schröder, Gold-modified indium tin oxide as a transparent window in photoelectronic diagnostics of electrochemically active biofilms. Biosens. Bioelectron. 94, 74–80 (2017)

    Article  CAS  Google Scholar 

  3. Y. Wei, X. Li, X. Sun, H. Ma, Y. Zhang, Q. Wei, Dual-responsive electrochemical immunosensor for prostate specific antigen detection based on Au-CoS/graphene and CeO2/ionic liquids doped with carboxymethyl chitosan complex. Biosens. Bioelectron. 94, 141–147 (2017)

    Article  CAS  Google Scholar 

  4. Y. Zhao, X. Li, Y. Liu, L. Zhang, F. Wang, Y. Lu, High performance surface-enhanced Raman scattering sensing based on Au nanoparticle-monolayer graphene-Ag nanostar array hybrid system. Sens. Actuators, B 247, 850–857 (2017)

    Article  CAS  Google Scholar 

  5. H. Zhang, L. Zhang, Y. Han, Y. Yu, M. Xu, X. Zhang, L. Huang, S. Dong, RGO/Au NPs/N-doped CNTs supported on nickel foam as an anode for enzymatic biofuel cells. Biosens. Bioelectron. 97, 34–40 (2017)

    Article  CAS  Google Scholar 

  6. A.S. Nia, W.H. Binder, Graphene as initiator/catalyst in polymerization chemistry. Prog. Polym. Sci. 67, 48–76 (2017)

    Article  CAS  Google Scholar 

  7. A.O. Baskakova, A.Y. Solov’evab, Y.V. Ioni b, S.S. Starchikova, I.S. Lyubutina, I.I. Khodosc, A.S. Avilova, S.P. Gubin, Magnetic and interface properties of the core-shell Fe3O4/Au nanocomposites. Appl. Surf. Sci. 422 638–644 (2017)

    Google Scholar 

  8. S. Xu, T. Gao, X. Feng, X. Fan, G. Liu, Y. Mao, X. Yu, J. Lin, X. Luo, Near infrared fluorescent dual ligand functionalized Au NCs based multidimensional sensor array for pattern recognition of multiple proteins and serum discrimination. Biosens. Bioelectron. 97, 203–207 (2017)

    Article  CAS  Google Scholar 

  9. G. Shi, Y. Li, G. Xi, Q. Xu, Z. He, Y. Liu, J. Zhang, J. Cai, Rapid green synthesis of gold nanocatalyst for high-efficiency degradation of quinclorac. J. Hazard. Mater. 335, 170–177 (2017)

    Article  CAS  Google Scholar 

  10. M. Huang, Y. Zhang, Y. Zhou, C. Zhang, S. Zhao, J. Fang, Y. Gao, X. Sheng, Synthesis and characterization of hollow ZrO2–TiO2/Au spheres as a highly thermal stability nanocatalyst. J. Colloid Interface Sci. 497, 23–32 (2017)

    Article  CAS  Google Scholar 

  11. J. Fang, Y. Zhang, Y. Zhou, S. Zhao, C. Zhang, M. Huang, Y. Gao, Synthesis of NiO–TiO2 hybrids/mSiO2 yolk-shell architectures embedded with ultrasmall gold nanoparticles for enhanced reactivity. Appl. Surf. Sci. 412, 616–626 (2017)

    Article  CAS  Google Scholar 

  12. L. Liu, P. Song, Q. Wei, X. Zhong, Z. Yang, Q. Wang, Synthesis of porous SnO2 hexagon nanosheets loaded with Au nanoparticles for high performance gas sensors. Mater. Lett. 201, 211–215 (2017)

    Article  CAS  Google Scholar 

  13. M. Afsaria, A.A. Youzbashib, H. Nuraniana, S.M. Zahraee, Remarkable improvement of visible light photocatalytic activity of TiO2 nanotubes doped sequentially with noble metals for removing of organic and microbial pollutants. Mater. Res. Bull. 94, 15–21 (2017)

    Article  CAS  Google Scholar 

  14. L. Huang, Y. Han, S. Dong, Highly-branched mesoporous Au–Pd–Pt trimetallic nanoflowers blooming on reduced graphene oxide as an oxygen reduction electrocatalyst. Chem. Commun. 52, 8659–8662 (2016)

    Article  CAS  Google Scholar 

  15. A.A. Oun, J. Rhim, Preparation of multifunctional chitin nanowhiskers/ZnO–Ag NPs and their effect on the properties of carboxymethyl cellulose-based nanocomposite film. Carbohydr. Polym. 169, 467–479 (2017)

    Article  CAS  Google Scholar 

  16. C. Liu, H. Tai, P. Zhang, Z. Ye, Y. Su, Y. Jiang, Enhanced ammonia-sensing properties of PANI–TiO2–Au ternary self-assembly nanocomposite thin film at room temperature. Sens. Actuators, B 246, 85–95 (2017)

    Article  CAS  Google Scholar 

  17. M. Radoiˇci´ca, G.´Ciri´c-Marjanovi´cb, V. Spasojevi´ca, P. Ahrenkielc, M. Mitri´ca, T. Novakovi´cd, Z. Saponji´ca, Superior photocatalytic properties of carbonized PANI/TiO2 nanocomposites. Appl. Catal. B: Environ. 213, 155–166 (2017)

    Google Scholar 

  18. Y. Li, J. Sun, L. Liu, F. Yang, A composite cathode membrane with CoFe2O4–rGO/PVDF on carbon fiber cloth: synthesis and performance in a photocatalysis-assisted MFCMBR system. Environ. Sci. Nano 4, 335–345 (2017)

    Article  CAS  Google Scholar 

  19. A.K. Solarajan, V. Murugadoss, S. Angaiah, High performance electrospun PVDF-HFP/SiO2 nanocomposite membrane electrolyte for Li-ion capacitors. J. Appl. Polym. Sci. 134, 45177 (2017)

    Article  CAS  Google Scholar 

  20. I. Chae, S. Ahmed, H. B. Atitallah, J. Luo, Qing Wang, Zoubeida Ounaies, Seong H. Kim, Vibrational sum frequency generation (SFG) analysis of ferroelectric response of PVDF-based copolymer and terpolymer. Macromolecules 50, 2838−2844 (2017)

    Article  CAS  Google Scholar 

  21. K. Oniwa, H. Kikuchi, H. Shimotani, S. Ikeda, N. Asao, Y. Yamamoto, K. Tanigakia, T. Jin, 2-Positional pyrene end-capped oligothiophenes for high performance organic field effect transistors. Chem. Commun. 52, 4800–4803 (2016)

    Article  CAS  Google Scholar 

  22. A.S. Abd-El-Aziz, A.A. Abdelghani, B.D. Wagner, E.M. Abdelrehim, Aggregation enhanced excimer emission (AEEE) with efficient blue emission based on pyrene dendrimers. Polym. Chem. 7, 3277–3299 (2016)

    Article  CAS  Google Scholar 

  23. Y. Tan, M. Liang, P. Lou, Z. Cui, X. Guo, W. Sun, X. Yu, In situ fabrication of CoS and NiS nanomaterials anchored on reduced graphene oxide for reversible lithium storage. ACS Appl. Mater. Interfaces. 8, 14488–14493 (2016)

    Article  CAS  Google Scholar 

  24. D. Han, N. Xiao, B. Liu, G. Song, J. Ding, One-pot synthesis of core/shell-structured NiS@onion-like carbon nanocapsule as a high-performance anode material for Lithium-ion batteries. Mater. Lett. 196, 119–122 (2017)

    Article  CAS  Google Scholar 

  25. L. Zhang, Y. Huang, Y. Zhang, H. Gu, W. Fan, T. Liu, Flexible electrospun carbon Nanofi ber@NiS core/sheath hybrid membranes as binder-free anodes for highly reversible lithium storage. Adv. Mater. Interfaces 3, 1500467 (2016)

    Article  CAS  Google Scholar 

  26. X. Li, Y. Chen, J. Zou, X. Zeng, L. Zhou, H. Huang, Stable freestanding Li-ion battery cathodes by in situ conformal coating of conducting polypyrrole on NiS-carbon nanofiber films. J. Power Sour. 331, 360–365 (2016)

    Article  CAS  Google Scholar 

  27. J.H. Lee, S. Kim, S. Park, M. Kang, A p-n heterojunction NiS-sensitized TiO2 photocatalytic system for efficient photoreduction of carbon dioxide to methane. Ceram. Int. 43, 1768–1774 (2017)

    Article  CAS  Google Scholar 

  28. H. Luo, B. Wang, Y. Li, T. Liu, W. You, D. Wang, Core-shell structured Fe3O4@NiS nanocomposite as high-performance anode material for alkaline nickel-iron rechargeable batteries. Electrochim. Acta 231, 479–486 (2017)

    Article  CAS  Google Scholar 

  29. Y. Lee, C.V.V.M. Gopi, M. Venkata-Haritha, S.S. Rao, H. Kim, Electrochemical growth of NiS nanoparticle thin film as counter electrode for quantum dot-sensitized solar cells. J. Photochem. Photobiol. A: Chem. 332, 200–207 (2017)

    Article  CAS  Google Scholar 

  30. H. Kim, S. Suh, S.S. Rao, D. Punnoose, C.V. Tulasivarma, C.V.V.M. Gopi, N. Kundakarla, S. Ravi, I.K. Durga, Investigation on novel CuS/NiS composite counter electrode for hindering charge recombination in quantum dot sensitized solar cells. J. Electroanal. Chem. 777, 123–132 (2016)

    Article  CAS  Google Scholar 

  31. H. Kim, H. Lee, S.S. Rao, A.E. Reddy, S. Kim, C.V. Thulasi-Varm, Well-dispersed NiS nanoparticles grown on a functionalized CoS nanosphere surface as a high performance counter electrode for quantum dot sensitized solar cells. RSC Adv. 6, 29003–29019 (2016)

    Article  CAS  Google Scholar 

  32. J. Gou, S. Xie, Z. Yang, Y. Liu, Y. Chen, Y. Liu, C. Liu, A high-performance supercapacitor electrode material based on NiS/ Ni3S4 composite. Electrochim. Acta 229, 299–305 (2017)

    Article  CAS  Google Scholar 

  33. B. Guan, Y. Li, B. Yin, K. Liu, D. Wang, H. Zhang, C. Cheng, Synthesis of hierarchical NiS microflowers for high performance asymmetric supercapacitor. Chem. Eng. J. 308, 1165–1173 (2017)

    Article  CAS  Google Scholar 

  34. Z. Li, A. Gu, J. Sun, Q. Zhou, Facile hydrothermal synthesis of NiS hollow microspheres with mesoporous shells for high-performance supercapacitors. New J. Chem. 40, 663–1670 (2016)

    Google Scholar 

  35. W. Li, S. Wang, L. Xin, M. Wu, X. Lou, Single-crystal b-NiS nanorod arrays with a hollowstructured Ni3S2 framework for supercapacitor Applications. J. Mater. Chem. A 4, 700–7709 (2016)

    Google Scholar 

  36. A.M. Patil, A.C. Lokhande, N.R. Chodankar, V.S. Kumbhar, C.D. Lokhande, Engineered morphologies of β-NiS thin films via anionic exchange process and their supercapacitive performance. Mater. Des. 97, 407–416 (2016)

    Article  CAS  Google Scholar 

  37. Y. Xin, Y. Lu, C. Han, L. Ge, P. Qiu, Y. Li, S. Fang, Novel NiS cocatalyst decorating ultrathin 2D TiO2 nanosheets with enhanced photocatalytic hydrogen evolution activity. Mater. Res. Bull. 87, 123–129 (2017)

    Article  CAS  Google Scholar 

  38. J.S. Chen, J. Ren, M. Shalom, T. Fellinger, M. Antonietti, Stainless steel mesh-supported NiS nanosheet array as highly efficient catalyst for oxygen evolution reaction. ACS Appl. Mater. Interfaces. 8, 509–5516 (2016)

    Google Scholar 

  39. N. Jiang, Q. Tang, M. Sheng, B. You, D. Jiang, Y. Sun, Nickel sulfides for electrocatalytic hydrogen evolution under alkaline conditions: a case study of crystalline NiS, NiS2, and Ni3S2 nanoparticles. Catal. Sci. Technol. 6, 1077–1084 (2016)

    Article  CAS  Google Scholar 

  40. J. Huang, Z. Shi, X. Dong, Nickel sulfide modified TiO2 nanotubes with highly efficient photocatalytic H2 evolution activity. J. Energy Chem. 25, 136–140 (2016)

    Article  Google Scholar 

  41. A.L. Luna, E. Novoseltceva, E. Louarn, P. Beaunier, E. Kowalska, B. Ohtani, M.A. Valenzuela, H. Remitaa, C. Colbeau-Justin, Synergetic effect of Ni and Au nanoparticles synthesized on titania particles for efficient photocatalytic hydrogen production. Appl. Catal. B: Environ. 191, 18–28 (2016)

    Article  CAS  Google Scholar 

  42. M. Mollavali, C. Falamaki, S. Rohani, High performance NiS-nanoparticles sensitized TiO2 nanotube arrays for water reduction. Int. J. Hydrogen Energy 41, 5887–5901 (2016)

    Article  CAS  Google Scholar 

  43. H. Derikvandi, A. Nezamzadeh-Ejhieh, Comprehensive study on enhanced photocatalytic activity of heterojunction ZnS–NiS/zeolite nanoparticles: Experimental design based on response surface methodology (RSM), impedance spectroscopy and GC-MASS studies. J. Colloid Interface Sci. 490, 652–664 (2017)

    Article  CAS  Google Scholar 

  44. X. Tang, L. Gan, Y. Duan, Y. Sun, Y. Zhang, Z. Zhang, A novel Cd2+ imprinted chitosan-based composite membrane for Cd2+ removal from aqueous solution. Mater. Lett. 198, 121–123 (2017)

    Article  CAS  Google Scholar 

  45. L. Ramos-Rivera, M. Distaso, W. Peukert, A.R. Boccaccini, Electrophoretic deposition of anisotropic a-Fe2O3/PVP/chitosan nanocomposites for biomedical applications. Mater. Lett. 200, 83–86 (2017)

    Article  CAS  Google Scholar 

  46. P.A. Nishad, A. Bhaskarapillai, S. Velmurugan, Enhancing the antimony sorption properties of nano titania-chitosan beads using epichlorohydrin as the crosslinker. J. Hazard. Mater. 334, 160–167 (2017)

    Article  CAS  Google Scholar 

  47. J. Li, B. Jiang, Y. Liu, C. Qiu, J. Hu, G. Qian, W. Guo, H.H. Ngo, Preparation and adsorption properties of magnetic chitosan composite adsorbent for Cu2+ removal. J. Cleaner Prod. 158, 51–58 (2017)

    Article  CAS  Google Scholar 

  48. V.K. Gupta, A. Fakhri, S. Agarwal, M. Azad, Synthesis and characterization of Ag2S decorated chitosan nanocomposites and chitosan nanofibers for removal of lincosamides antibiotic. Int. J. Biol. Macromol. 103, 1–7 (2017)

    Article  CAS  Google Scholar 

  49. S. Frindy, A. Primo, H. Ennajih, A. Qaiss, R. Bouhfid, M. Lahcini, E.M. Essassi, H. Garcia, A.E. Kadib, Chitosan–graphene oxide films and CO2-dried porous aerogel microspheres: interfacial interplay and stability. Carbohydr. Polym. 167, 297–305 (2017)

    Article  CAS  Google Scholar 

  50. T. Tolessa, X. Zhou, M. Amde, J. Liu, Development of reusable magnetic chitosan microspheres adsorbent for selective extraction of trace level silver nanoparticles in environmental waters prior to ICP-MS analysis. Talanta 169, 91–97 (2017)

    Article  CAS  Google Scholar 

  51. M. Lian, X. Chen, X. Liu, Z. Yi, W. Yang, A self-assembled peptide nanotube–chitosan composite as a novel platform for electrochemical cytosensing. Sens. Actuators, B 251, 86–92 (2017)

    Article  CAS  Google Scholar 

  52. A.R. Sadrolhosseini, M. Naseri, S.A. Rashid, Polypyrrole-chitosan/nickel-ferrite nanoparticle composite layer for detecting heavy metal ions using surface plasmon resonance technique. Opt. Laser Technol. 93, 216–223 (2017)

    Article  CAS  Google Scholar 

  53. J. Lin, Z. Liu, Q. Zhu, X. Rong, C. Liang, J. Wang, D. Ma, J. Sun, G. Wang, Redox-responsive nanocarriers for drug and gene co-delivery based on chitosan derivatives modified mesoporous silica nanoparticles. Colloids Surf. B: Biointerfaces 155, 41–50 (2017)

    Article  CAS  Google Scholar 

  54. M. Song, L. Li, Y. Zhang, K. Chen, H. Wang, R. Gong, Carboxymethyl-β-cyclodextrin grafted chitosan nanoparticles as oral delivery carrier of protein drugs. React. Funct. Polym. 117, 10–15 (2017)

    Article  CAS  Google Scholar 

  55. L. Racine, G. Costa, E. Bayma-Pecita, I. Texiera, R. Auzély-Velty, Design of interpenetrating chitosan and poly(ethylene glycol) sponges for potential drug delivery applications. Carbohydr. Polym. 170, 166–175 (2017)

    Article  CAS  Google Scholar 

  56. L. Liu, L. Mirandola, M. Chiriva-Internati, J. Chaudhuri, CdS quantum dot-chitosan-anti SP17 nanohybrid as a potential cancer biomarker. Mater. Lett. 199, 5–8 (2017)

    Article  CAS  Google Scholar 

  57. X. Zhang, G. Xiao, Y. Wang, Y. Zhao, H. Su, T. Tan, Preparation of chitosan-TiO2 composite film with efficient antimicrobial activities under visible light for food packaging applications. Carbohydr. Polym. 169, 101–107 (2017)

    Article  CAS  Google Scholar 

  58. X. Ma, B. Zhang, Q. Cong, X. He, M. Gao, G. Li, Organic/inorganic nanocomposites of ZnO/CuO/chitosan with improved properties. Mater. Chem. Phys. 178, 88–97 (2016)

    Article  CAS  Google Scholar 

  59. Q. Cong, X. He, M. Gao, X. Ma, G. Li, ZnO/CuS heterostructured nanocomposite and its organic functionalization. Mater. Res. Innovations 18, 740–746 (2014)

    Article  CAS  Google Scholar 

  60. Q. Cong, H. Geng, X. He, M. Gao, X. Ma, G. Li, Surface modification of ZnO nanosheets with Au/polyaniline and their properties. Mater. Res. Innovations 18, 30–36 (2014)

    Article  CAS  Google Scholar 

  61. X. Ma, M. Wang, G. Li, H. Chen, R. Bai, Preparation of polyaniline-TiO2 composite film with in-situ polymerization approach and its gas-sensitivity at room temperature. Mater. Chem. Phys. 98, 241–247 (2006)

    Article  CAS  Google Scholar 

  62. X. Ma, B. Zhang, Q. Cong, X. He, M. Gao, G. Li, Highly-enhanced performance of TiO2 nanotube attached CdS quantum dots. Curr. Nanosci. 12, 500–507 (2016)

    Article  CAS  Google Scholar 

  63. J. Zheng, X. Ma, X. He, M. Gao, G. Li, Preparation, characterizations, and its potential applications of PANi/graphene oxide nanocomposite. Procedia Eng. 27, 1478–1487 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the Natural Science Foundation of Shandong Province (project No. ZR2013EMM008, ZR2016JL020), the Open Research Project of the State Key Laboratory of Industrial Control Technology, Zhejiang University, China (No. ICT170303), Zhejiang University, the Science Research Project of Yantai City (2013ZH349).

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingfa Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, S. et al. (2018). Preparation and Properties of Interconnected NiS Nanoparticle Network with Amphiphilic Polymers. In: Han, Y. (eds) Advanced Functional Materials. CMC 2017. Springer, Singapore. https://doi.org/10.1007/978-981-13-0110-0_15

Download citation

Publish with us

Policies and ethics