Skip to main content

Failure Mechanisms of Ti–Al3Ti Metal-Intermetallic Laminate Composites

  • Conference paper
  • First Online:
Advances in Materials Processing (CMC 2017)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Included in the following conference series:

  • 2410 Accesses

Abstract

Ti–Al3Ti Metal-Intermetallic Laminate (MIL) composites were fabricated by vacuum hot pressing. The failure mechanisms of Ti–Al3Ti MIL composites under the bending load and dynamic loading conditions were analyzed by three points bending test and finite element analysis respectively. The results indicated that the vertical crack existed in the as-deposited state Ti–Al3Ti MIL composites in the Al3Ti layers resulted by the thermal residual stress. The three points bending load- displacement curves of Ti–Al3Ti MIL composites embraced a long plateau region, indicating that Ti–Al3Ti MIL composites have excellent damage tolerance. Ti–Al3Ti MIL composites under high-speed impact was mostly under the tensile stress. In the high-speed impact period, the transverse, inclined, and vertical cracks which dramatically absorb the projectile kinetic energy formed in Al3Ti phase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.J. Harach, K.S. Vecchio, Microstructure evolution in metal-intermetallic laminate (MIL) composites synthesized by reactive foil sintering in air. Metall. Mater. Trans. A 32(6), 1493–1505 (2001)

    Article  Google Scholar 

  2. J.G. Luo, V.L. Acoff, Using cold roll bonding and annealing to process Ti/Al multilayered composites from element foils. Mater. Sci. Eng., A 379(1/2), 164–172 (2004)

    Article  CAS  Google Scholar 

  3. Y. Cao, C.H. Guo, S.F. Zhu et al., Fracture behavior of Ti/Al3Ti metal-intermetallic laminate (MIL) composite under dynamic loading. Mater. Sci. Eng., A 637, 235–242 (2005)

    Article  CAS  Google Scholar 

  4. S.A. Zelepugin, S.S. Shpakov, Failure of metallic-intermetallic multilayered composite under high-velocity impact. J. Comp. Mech. Design 15(3), 369–382 (2009)

    Google Scholar 

  5. P.J. Zhou, C.H. Guo, E.H. Wang et al., Interface tensile and fracture behavior of the Ti/Al3Ti Metal-Intermetallic Laminate (MIL) composite under quasi-static and high strain rates. Mater. Sci. Eng., A 665, 66–75 (2016)

    Article  CAS  Google Scholar 

  6. F. Jiang, R.M. Kulin, K.S. Vecchio, Use of Brazilian disk test to determine properties of metallic-intermetallic laminate composites. J. Min. Met. Mater. Soc. 62(1), 35–40 (2010)

    Article  CAS  Google Scholar 

  7. A. Rohatgi, D.J. Harach, K.S. Vecchio, K.P. Harvey, Resistance-curve and fracture behavior of Ti-Al3Ti metallic-intermetallic laminate (MIL) composites. Acta Mater. 51, 2933–2957 (2003)

    Article  CAS  Google Scholar 

  8. T.Z. Li, F. Grignon, D.J. Benson, K.S. Vecchio et al., Modeling the elastic properties and damage evolution in Ti-Al3Ti metal-intermetallic laminate (MIL) composite. Mater. Sci. Eng., A 374(1–2), 10–26 (2004)

    Article  CAS  Google Scholar 

  9. D.R. Leseur, Experimental investigations of material models for Ti-6Al-4V titanium and 2024-T3 aluminum. Technical Report DOT/FAA/AR-00/25. US department of Transportation. Federal Aviation Administration, September 2000

    Google Scholar 

  10. G. Kay, Failure modeling of titanium 6Al-4V and aluminum 2024-T3 with the Johnson-Cook material model. Technical Report DOT/FAA/AR-03/57. US department of Transportation, Federal Aviation Administration, September 2003

    Google Scholar 

  11. Y. Cao, S.F. Zhu, C.H. Guo, K.S. Vecchio, Numerical investigation of the ballistic performance of metal-intermetallic laminate composites. Appl. Compos. Mater. 22, 437–456 (2015)

    Article  CAS  Google Scholar 

  12. D.S. Cronin, K. Bui, C. Kaufmann, G. McIntosh, T. Berstad, Implementation and validation of the Johnson-Holmquist ceramic material model in LS-DYNA, in 4th European LS-dyna Users Conference, 2003, pp. 47–60

    Google Scholar 

  13. T.J. Holmquist, G.R. Johnson, Modeling prestressed ceramic and its effect on ballistic performance. Int. J. Impact Eng. 31(2), 113–127 (2005)

    Article  Google Scholar 

  14. B. Dang, X. Zhang, Y.Z. Chen et al., Breaking through the strength-ductility trade-off dilemma in an Al-Si-based casting alloy. Scientific Reports, 6(30874) (2016), pp. 1–10

    Google Scholar 

  15. D.R. Hartman, S.J. Bless, S.J. Hanchak, Ballistic performance of thick S-2 glass composites, in Proceedings of the Symposium on Composite Materials in Armament Applications, UDR-TR-85-88a, 20–22 August 1985

    Google Scholar 

  16. D. Sherman, T. Ben-Shushan, Quasi-static impact damage in confined ceramic tiles. Int. J. Impact Eng. 21(4), 245e65 (1998)

    Article  Google Scholar 

  17. N.A. Fellows, P.C. Barton, Development of impact model for ceramic faced semi-infinite armour. Int. J. Impact Eng. 22, 793–811 (1999)

    Article  Google Scholar 

  18. Z.H. Tan, X. Han, W. Zhang, S.H. Luo, An investigation on failure mechanisms of ceramic/metal armour subjected to the impact of tungsten projectile. Int. J. Impact Eng. 37, 1162–1169 (2010)

    Article  Google Scholar 

  19. R. Yahaya, S.M. Sapuan, M. Jawaid et al., Measurement of ballistic impact properties of woven kenaf-aramid hybrid composites. Measurement 77, 335–343 (2016)

    Article  Google Scholar 

  20. W.L. Cheng, S. Langlie, S. Itoh, High Velocity impact of thick composites. Int. J. Impact Eng. 29, 167–184 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by the Natural Science of China (51201155), the Natural Science of Shanxi province (2012011019-1, 2012011007-1), and the Chinese Education Ministry Foundation for Doctors (20101420120006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Meini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meini, Y., Yao, L., Lizhou, L., Hehe, C., Bin, H. (2018). Failure Mechanisms of Ti–Al3Ti Metal-Intermetallic Laminate Composites. In: Han, Y. (eds) Advances in Materials Processing. CMC 2017. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-0107-0_87

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0107-0_87

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0106-3

  • Online ISBN: 978-981-13-0107-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics