Microstructures and Mechanical Properties of 584 mm 7055 Alloy Billet by Direct Chill Casting Under Annular Electromagnetic Stirring Coupled with Intercooling

  • Yajun Luo
  • Zhifeng Zhang
  • Minwei Gao
  • Bao Li
  • Chunsheng Chen
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

Combined with annular electromagnetic stirring and intercooling, a uniform direct chill (UDC) casting was proposed and used to produce 7075 aluminum alloy billets of Φ584 mm. In this paper, the experiments were employed to investigate the solidification behavior of 7055 alloy during UDC casting process. The effect of the technology on the microstructures of the billets and mechanical property was studied. The results illustrated that the UDC could refine the microstructures of the billets of 7055 alloy and reduce macrosegregation. The billet prepared had better mechanical property compared to normal DC casting.

Keywords

Direct chill casting Electromagnetic stirring 7055 alloy Intercooling 

Notes

Acknowledgements

This work was financially supported by the International Science and Technology Cooperation Program of China (No. 2015DFA51230).

References

  1. 1.
    J.Z. Cui, H.T. Zhang, Y.B. Zuo, DC casting of large sized ingot of a high strength 7xxx alloy under the influence of electromagnetic field. C. Mater. Sci. Forum. 765, 165–169 (2013)CrossRefGoogle Scholar
  2. 2.
    B. Liu, Q. Lei, L. Xie, M. Wang, Z. Li, Microstructure and mechanical properties of high product of strength and elongation Al–Zn–Mg–Cu–Zr alloys fabricated by spray deposition. J. Mater. Des. 96, 217–223 (2016)Google Scholar
  3. 3.
    H. Yu, M. Wang, X. Sheng, Z. Li, L. Chen, Q. Lei, C. Chen, Y. Jia, Z. Xiao, W. Chen, H. Wei, H. Zhang, X. Fan, Y. Wang, Microstructure and tensile properties of large-size 7055 aluminum billets fabricated by spray forming rapid solidification technology. J. Alloys Compd. 578, 208–214 (2013)CrossRefGoogle Scholar
  4. 4.
    C. Vives, Effects of electromagnetic vibrations on the microstructure of continuously cast aluminium alloys. J. Mater. Sci. Eng. A. 173, 169–172 (1993)CrossRefGoogle Scholar
  5. 5.
    J. Xu, H. Wang, M. Tang, Z. Zhang, Application research on DC casting process by annular electromagnetic stirring for a modified 7075 alloy. C. Mater. Sci. Forum. 765, 175–179 (2013)CrossRefGoogle Scholar
  6. 6.
    Y. Luo, Z. Zhang, B. Li, Y. Qiu, M. He, Effects of annular electromagnetic stirring coupled with intercooling on grain refinement and homogeneity during direct chill casting of large-sized 7005 alloy billet. J. JOM. 1–4 (2017)Google Scholar
  7. 7.
    D.G. Eskin, Physical Metallurgy of Direct Chill Casting of Aluminum Alloys (CRC Press, New York, 2008)CrossRefGoogle Scholar
  8. 8.
    H.T. Li, M. Xia, P. Jarry, G.M. Scamans, Z. Fan, Grain refinement in a AlZnMgCuTi alloy by intensive melt shearing: a multi-step nucleation mechanism. J. Cryst. Growth 314(1), 285–292 (2011)CrossRefGoogle Scholar
  9. 9.
    Z. Fan, M. Xia, H. Zhang, G. Liu, J.B. Patel, Z. Bian, I. Bayandorian, Y. Wang, H.T. Li, G.M. Scamans, Melt conditioning by advanced shear technology (MCAST) for refining solidification microstructures. J. Int. J. Cast Met. Res. 22(1), 103–107 (2009)CrossRefGoogle Scholar
  10. 10.
    H. Zhang, H. Nagaumi, J. Cui, Coupled modeling of electromagnetic field, fluid flow, heat transfer and solidification during low frequency electromagnetic casting of 7XXX aluminum alloys. Part II: the effects of electromagnetic parameters on casting processes. J Mater. Sci. Eng. A. 448(1–2), 177–188 (2007)CrossRefGoogle Scholar
  11. 11.
    R. Haghayeghi, P. Kapranos, Grain refinement of AA7075 alloy under combined magnetic fields. J. Mater. Lett. 151, 38–40 (2015)CrossRefGoogle Scholar
  12. 12.
    Y. Luo, Z. Zhang, M. Gao, J. Xu, S. Zhang, Study on grain refinement and homogenization of large-sized DC casting ingot by A-EMS melt Treatment. C. Mater. Sci. Forum. 850, 653–658 (2016)CrossRefGoogle Scholar
  13. 13.
    Z. Fan, G. Li, Solidification behaviour of AZ91D alloy under intensive forced convection in the RDC process. J. Acta Mater. 53(16), 4345–4357 (2005)CrossRefGoogle Scholar
  14. 14.
    E. Liotti, A. Lui, R. Vincent, S. Kumara, Z. Guo, T. Connolley, I.P. Dolbnya, M. Hart, L. Arnberg, R.H. Mathiesen, P.S. Grant, A synchrotron X-ray radiography study of dendrite fragmentation induced by a pulsed electromagnetic field in an Al–15Cu alloy. J. Acta Mater. 70, 228–239 (2014)CrossRefGoogle Scholar
  15. 15.
    B. Dang, X. Zhang, Y.Z. Chen, C.X. Chen, H.T. Wang, F. Liu, Breaking through the strength-ductility trade-off dilemma in an Al–Si-based casting alloy. J. Sci. Rep. 6, 30874 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Yajun Luo
    • 1
  • Zhifeng Zhang
    • 1
  • Minwei Gao
    • 1
  • Bao Li
    • 1
  • Chunsheng Chen
    • 1
  1. 1.General Research Institute for Non-Ferrous MetalsBeijingChina

Personalised recommendations