Skip to main content

Microstructure and Mechanical Properties of Aluminum Clad Steel Plates by Cold Rolling and Annealing Heat Treatment

  • Conference paper
  • First Online:
Advances in Materials Processing (CMC 2017)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Included in the following conference series:

Abstract

Aluminum clad steel plate has been successfully fabricated by cold rolling and annealing heat treatment. The thicknesses of total clad plate and aluminum cladding layer were about 1.5 mm and 50–70 μm, respectively. The grain morphology, mechanical properties revealed a slight anisotropy. Herein, the grains were severe elongated along the cold rolling direction. The clad plates exhibited a superior tensile elongation and slight interfacial delamination, and highest value of multiple bending fracture times was located at the clad plate along the angle of 45°. Moreover, the perfect interfacial brazing bonding presented at the base clad plate and fins, which can be used in the power station.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Kawase, M. Makimoto, K. Takagi, Y. Ishida, T. Tanaka, Development of aluminum clad steel by roll bonding. Trans. ISIJ 23, 628–632 (1983)

    Article  Google Scholar 

  2. M.M. Atabaki, M. Nikodinovski, P. Chenier, J. Ma, M. Harooni, R. Kovacevic, Welding of aluminum alloys to steels: an overview. J. Manuf. Sci. Prod. 14, 59–78 (2014)

    Google Scholar 

  3. L. Li, K. Nagai, F.X. Yin, Progress in cold roll bonding of metals. Sci. Technol. Adv. Mater. 9, 1–11 (2008)

    Google Scholar 

  4. Y. Wang, S.G. Zhou, K.S. Vecchio, Annealing effects on the microstructure and properties of an Fe-based metallic-intermetallic laminate (MIL) composite. Mater. Sci. Eng., A 665, 47–58 (2016)

    Article  CAS  Google Scholar 

  5. Y. Wang, K.S. Vecchio, Microstructure evolution in a martensitic 430 stainless steel-Al metallic-intermetallic laminate (MIL) composite. Mater. Sci. Eng., A 643, 72–85 (2015)

    Article  CAS  Google Scholar 

  6. Y. Wang, K.S. Vecchio, Microstrcutre evolution in Fe-based-aluminide metallic-intermetallic laminate (MIL) composites. Mater. Sci. Eng., A 649, 325–337 (2016)

    Article  CAS  Google Scholar 

  7. P.C. Tortorici, M.A. Dayananda, Phase formation and interdiffusion in Al-clad 430 stainless steels. Mater. Sci. Eng., A 244, 207–215 (1998)

    Article  Google Scholar 

  8. H.D. Manesh, A.K. Taheri, The effect of annealing treatment on mechanical properties of aluminum clad steel sheet. Mater. Des. 24, 617–622 (2003)

    Article  CAS  Google Scholar 

  9. W.S. Hwang, T.I. Wu, W.C. Sung, Effect of heat treatment on mechanical property and microstructure of aluminum/stainless steel bimetal plate. J. Eng. Mater. Technol. 134, 014501-1-6 (2012)

    Article  CAS  Google Scholar 

  10. A. Nishimoto, K. Akamatsu, Preparation of homogeneous Fe-Al intermetallic compound sheet by multi-layered rolling and subsequent heat treatment. Mater. Sci. Forum 561–565, 857–860 (2007)

    Article  Google Scholar 

  11. H.Y Wu, S. Lee, J. Wang, Solid-state bonding of iron-based alloys, steel–brass, and aluminum alloys. J. Mater. Process. Technol. 75, 173–179 (1998)

    Article  Google Scholar 

  12. M. Talebian, M. Alizadeh, Manufacturing Al/steel multilayered composite by accumulative roll bonding and the effects of subsequent annealing on the microstructural and mechanical characteristics. Mater. Sci. Eng., A 590, 186–193 (2014)

    Article  CAS  Google Scholar 

  13. M. Soltan, A. Nezhad, A. Haerian Ardakani, A study of joint quality of aluminum and low carbon steel strips by warm rolling. Mater. Des. 30, 1103–1109 (2009)

    Article  CAS  Google Scholar 

  14. X. Liu, S. Lan, J. Ni, Analysis of process parameters effects on friction stir welding of dissimilar aluminum alloy to advanced high strength steel. Mater. Des. 59, 50–62 (2014)

    Article  CAS  Google Scholar 

  15. K. Kimapong, T. Watanabe, Lap joint of A5083 aluminum alloy and SS400 steel by friction stir welding. Mater. Trans. 46, 835–841 (2005)

    Article  CAS  Google Scholar 

  16. K. Lee, S. Kumai, T. Arai, Interfacial microstructure and strength of steel to aluminum alloy lap joints welded by a defocused laser beam. Mater. Trans. 46, 1847–1856 (2005)

    Article  CAS  Google Scholar 

  17. R.F. Qiu, H.X. Shi, K. Zhang, Y. Tu, C. Iwamoto, S. Satonaka, Interfacial characterization of joint between mild steel and aluminum alloy welded by resistance spot welding. Mater. Charact. 61, 684–688 (2010)

    Article  CAS  Google Scholar 

  18. M. Acarer, B. Demir, An investigation of mechanical and metallurgical properties of explosive welded aluminum-dual phase steel. Mater. Lett. 62, 4158–4160 (2008)

    Article  CAS  Google Scholar 

  19. S.H. Choi, J.W. Kwon, K.H. Oh, Prediction of inhomogeneous texture in clad sheet metals by hot roll bond method. Met. Mater. 2, 133–140 (1996)

    Article  CAS  Google Scholar 

  20. S.C. Pan, M.N. Huang, G.-Y. Tzou, S.W. Syu, Analysis of asymmetrical cold and hot bond rolling of unbounded clad sheet under constant shear friction. J. Mater. Process. Technol. 177, 114–120 (2006)

    Article  CAS  Google Scholar 

  21. Y. Jiang, D.S. Peng, D. Lu, L.X. Li, Analysis of clad sheet bonding by cold rolling. J. Mater. Process. Technol. 105, 32–37 (2000)

    Article  Google Scholar 

  22. H.R. Akramifard, H. Mirzadeh, M.H. Parsa, Cladding of aluminum on AISI 30 4L stainless steel by cold roll bonding: mechanism, microstructure, and mechanical properties. Mater. Sci. Eng., A 613, 232–239 (2014)

    Article  CAS  Google Scholar 

  23. H.D. Manesh, A.K. Taheri, Study of mechanisms of cold roll welding of aluminum alloy to steel strip. Mater. Sci. Technol. 20, 1064–1068 (2004)

    Article  CAS  Google Scholar 

  24. G. Tzou, M. Huang, Analytical modified model of the cold bond rolling of unbounded double-layers sheet considering hybrid friction. J. Mater. Process. Technol. 140, 622–627 (2003)

    Article  Google Scholar 

  25. M. Voncina, H.S. Hrenko, J. Medved, Interaction between Al99.5 and stainless steel at elevated temperature and pressure. RMZ—M&G 62, 213–224 (2015)

    Google Scholar 

  26. R. Jamaati, M.R. Toroghinejad, Cold roll bonding bond strengths: review. Mater. Sci. Technol. 27, 1101–1108 (2011)

    Article  CAS  Google Scholar 

  27. S.H. Choi, K.H. Kim, K.H. Oh, D.N. Lee, Tensile deformation behavior of stainless steel clad aluminum bilayer sheet. Mater. Sci. Eng., A 222, 158–165 (1997)

    Article  Google Scholar 

  28. Q. Qin, Z.H. Wu, Y. Zang, B. Guan, F.X. Zhang, Warping deformation of 316l/q345r stainless composite plate after removal strake. World J. Eng. 13, 206–209 (2016)

    Article  CAS  Google Scholar 

  29. Q. Qin, Z.H. Wu, Y. Zang, B. Guan, A simulation study on the multi-pass rolling bond of 316L/Q345R stainless clad plate. Adv. Mech. Eng. 7, 1–13 (2015)

    Google Scholar 

  30. D.N. Lee, Y.K. Kim, Tensile properties of stainless steel-clad aluminum sandwich sheet metals. J. Mater. Sci. 23, 1436–1442 (1988)

    Article  CAS  Google Scholar 

  31. H.Y. Wang, X. Li, Z.H. Wang, D.W. Zhao, D.H. Zhang, Analysis of sandwich rolling with two different thicknesses outer layers based on slab method. Int. J. Mech. Sci. 106, 194–208 (2016)

    Article  Google Scholar 

  32. P.S. Stieif, Interfacial instabilities in an unbonded layered solid. Int. J. Solids Struct. 26, 915–935 (1990)

    Article  Google Scholar 

  33. S.L. Semiatin, H.R. Piehler, Forming limits of sandwich sheet materials. Metall. Trans. A 10, 1107–1118 (1979)

    Article  Google Scholar 

  34. F. Afrouz, A. Parvizi, An analytical model of asymmetric rolling of unbounded clad sheets with shear effects. J. Manuf. Process. 20, 162–171 (2015)

    Article  Google Scholar 

  35. R. Uscinowicz, Experimental identification of yield surface of Al-Cu bimetallic sheet. Compos. B 55, 96–108 (2013)

    Article  CAS  Google Scholar 

  36. Y. Kimura, T. Inoue, F.X. Yin, K. Tsuzaki, Inverse temperature dependence of toughness in an ultrafine grain-structure steel. Science 320, 1057–1059 (2008)

    Article  CAS  Google Scholar 

  37. S.M. Allen, E.L. Thomas, The Structure of Material (Wiley, 1999), pp. 359–363

    Google Scholar 

  38. L.J. Huang, L. Geng, Discontinuously Reinforced Titanium Matrix Composites (Springer, 2007), pp. 1–180

    Google Scholar 

  39. A. Cetin, C. Bernardi, A. Mortensen, An analysis of the tensile elongation to failure of laminated metal composites in the presence of strain-rate hardening. Acta Mater. 60, 2265–2276 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (NSFC) under Grant No. 51601055, 51304059, the Hebei Science and Technology program under Grant No. 130000048, the National Natural Science Foundation of Hebei Province under Grant Nos. E201620218 and QN2016029.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoxi Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yin, F. et al. (2018). Microstructure and Mechanical Properties of Aluminum Clad Steel Plates by Cold Rolling and Annealing Heat Treatment. In: Han, Y. (eds) Advances in Materials Processing. CMC 2017. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-0107-0_61

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0107-0_61

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0106-3

  • Online ISBN: 978-981-13-0107-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics