Skip to main content

Dielectric and Impedance Studies on (K0.5Na0.5)NbO3-Based Ceramics

  • Conference paper
  • First Online:
Advances in Materials Processing (CMC 2017)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Included in the following conference series:

  • 3334 Accesses

Abstract

Polycrystalline, lead-free (K0.5Na0.5)NbO3-based ceramics were synthesized using solid-state reaction method. The microstructure, dielectric and impedance characteristics of the ceramics were studied. The results showed that the obtained doped ceramic had a pure perovskite structure with pseudo-cubic phase. Some dielectric anomalies were observed at about 200 °C, and 500 °C for the ceramics, respectively. With the increase of BaBiO3 doping content, the dielectric constant-temperature transition peak value became weaker. The activation energy of conductivity is found to be closely related to the frequency. The activation energy obtained from the dielectric relaxation data was attributed to oxygen vacancies. The calculated activation energies at 10 kHz for the temperature range (200–500 °C) and (200–350 °C) and (350–500 °C) are 0.657, 0.542 and 0.350 eV, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Shirane, R. Newnham, R. Pepinsky, Dielectric properties and phase transitions of NaNbO3, and (Na, K)NbO3. Phys. Rev. 96, 581–588 (1954)

    Article  CAS  Google Scholar 

  2. D.E. Harrison, G. Shirane, Crystal growth and structural study of the barium-titanium-phosphate phosphor. J. Electrochem. Soc. 108, 788–790 (1961)

    Article  CAS  Google Scholar 

  3. R.E. Jaeger, L. Egerton, Hot pressing of potassium-sodium niobates. J. Am. Ceram. Soc. 45, 209 (1962)

    Article  CAS  Google Scholar 

  4. M. Jiang, X. Liu, G. Chen, Phase structures and electrical properties of new lead-free Na0.53-BiFeO ceramics. Scripta. Mater. 60, 909–912 (2009)

    Google Scholar 

  5. M.H. Jiang, G.Q. Zhao, Z.F. Gu et al., In-depth structure characterization and properties of (1 − x)(Li0.05Na0.475K0.475)(Nb0.95Sb0.05)O3-xBiFeO3, lead-free piezoceramics. J. Mater. Sci Mater. Electron. 26, 9366–9372 (2015)

    Google Scholar 

  6. J. Tellier, B. Malic, B. Dkhil et al., Crystal structure and phase transitions of sodium potassium niobateperovskites. Solid State Sci. 11, 320–324 (2009)

    Article  CAS  Google Scholar 

  7. W. Ge, Y. Ren, J. Zhang et al., A monoclinic-tetragonal ferroelectric phase transition in lead-free (K0.5Na0.5)NbO3-x%LiNbO3 solid solution. J. Appl. Phys. 111, S84–S13 (2012)

    Google Scholar 

  8. D. Kobor, B. Guiffard, L. Lebrun et al., Oxygen vacancies effect on ionic conductivity and relaxation phenomenon in undoped and Mn doped PZN-4.5PT single crystals. J. Phy. D: Appl. Phys. 40, 2920–2926 (2007)

    Article  CAS  Google Scholar 

  9. M. Jiang, C.A. Randall, H. Guo et al., Seed-free solid-state growth of large lead-free piezoelectric single crystals: (Na1/2K1/2)NbO3. J. Am. Ceram. Soc. 98, 2988–2996 (2015)

    Article  CAS  Google Scholar 

  10. J.R. Macdonald, W.B. Johnson, Fundamentals of Impedance Spectroscopy. Impedance Spectroscopy (2005), pp. 1–26

    Google Scholar 

  11. D.C. Sinclair, A.R. West, Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance. J. Appl. Phys. 66, 3850–3856 (1989)

    Article  CAS  Google Scholar 

  12. J. Suchanicz, The low-frequency dielectric relaxation Na0.5Bi0.5TiO3 ceramics. Mater. Sci. 55, 114–118 (1998)

    Google Scholar 

  13. D.C. Sinclair, A.R. West, Electrical properties of a LiTaO3 single crystal. Phys. Rev. B Condens. Matter 39, 13486–13492 (1989)

    Article  CAS  Google Scholar 

  14. V.V. Kirillov, V.A. Isupov, Relaxation polarization of PbMg1/3Nb2/3O3(PMN)-A ferroelectric with a diffused phase transition. Ferroelectrics 5, 3–9 (1973)

    Article  CAS  Google Scholar 

  15. A. Niemer, R. Pankrath, K. Betzler, Dielectric properties and the phase transition of pure and cerium doped calcium-barium-niobate. J. Phys.-Condens. Mat. 2, 80–84 (2012)

    CAS  Google Scholar 

  16. K. Uchino, S. Nomura, Dielectric properties and the phase transition of pure and cerium doped calcium-barium-niobate. Ferroelectrics 50, 191–196 (1983)

    Article  Google Scholar 

  17. P. Han, Q. Li, Y.X. Zhu, Mutation of causes meristem defects by failing to confine expression to the organizing center. Spectrochim. Acta Part A J. Mol. Spectrosc. 44, 853–853 (2008)

    Google Scholar 

  18. S. Poykko, D.J. Chadi, First principles study of Pb vacancies in PbTiO3. Appl. Phys. Lett. 76, 499–501 (2000)

    Article  CAS  Google Scholar 

  19. S. Steinsvik, R. Bugge, J.G. Jonnes, The defect structure of SrT1-xFexO3-y (x = 0–0.8) investigated by electrical conductivity measurements and electron energy loss spectroscopy (EELS). J. Phys. Chem. Solids 58, 969–976 (1997)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minhong Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yan, Y. et al. (2018). Dielectric and Impedance Studies on (K0.5Na0.5)NbO3-Based Ceramics. In: Han, Y. (eds) Advances in Materials Processing. CMC 2017. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-0107-0_57

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0107-0_57

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0106-3

  • Online ISBN: 978-981-13-0107-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics