Advertisement

Microstructures and Tensile Behaviors of Stainless Steel Clad Plate

  • CuiXin Chen
  • MingYang Liu
  • BaoXi Liu
  • FuXing Yin
  • YanChun Dong
  • Wei Fang
  • Xin Zhang
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

A novel bi-layers clad plate comprising of stainless steel and carbon steel has been successfully fabricated by vacuum hot rolling at a high temperature of 1100 °C. The microstructure observation showed an interfacial transition zone about 80–100 μm in width, which is attributed to the diffusion of carbon element at the interface. The stainless steel clad plate exhibited a high ultimate tensile strength (578 MPa) and high uniform elongation (52%), and the elastic modulus and stress mismatch at the interface resulted into severe warping resilience phenomenon. Fracture characterizations highlight that the delamination and intergranular cracks presented at the interfacial transition zone.

Keywords

Metallic composites Laminates Microstructure Interfaces Deformation and fracture Elastic properties 

Notes

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (NSFC) under Grant No. 51304059, the Hebei Science and Technology program under Grant Nos. 130000048, the National Natural Science Foundation of Hebei Province under Grant Nos. E201620218, E2015202190, ZD20131018 and QN2016029.

References

  1. 1.
    T. Koseki, J. Inoue, S. Nambu, Development of multilayer steels for improved combinations of high strength and high ductility. Mater. Trans. 55, 227–237 (2014)CrossRefGoogle Scholar
  2. 2.
    O. Bouaziz, J.P. Masse, G. Petitgand, M.X. Huang, A novel strong and ductile TWIP/Martensite steel. Adv. Eng. Mater. 18, 56–59 (2015)CrossRefGoogle Scholar
  3. 3.
    T. Oya, N. Tiesler, S. Kawanishi, J. Yanaimoto, T. Koseki, Experimental and numerical analysis of multilayered steel sheets upon bending. J. Mater. Process. Technol. 210, 1926–1933 (2010)CrossRefGoogle Scholar
  4. 4.
    A. Atrian, F. Fereshteh-Saniee, Deep drawing process of steel/brass laminated sheets. Compos. B 47, 75–81 (2013)CrossRefGoogle Scholar
  5. 5.
    E. Afshin, M. Kadkhodayan, A experimental investigation into the warm deep-drawing process on laminated sheet under various grain sizes. Mater. Des. 87, 25–35 (2015)CrossRefGoogle Scholar
  6. 6.
    Y. Ohashi, J. Wolfenstine, R. Koch, O.D. Sherby, Fracture behavior of a laminated steel-brass composite in bend tests. Mater. Sci. Eng. A 151, 37–42 (1992)CrossRefGoogle Scholar
  7. 7.
    J. Yanagimoto, T. Oya, S. Kawanishi, N. Tiesler, T. Koseki, Enhancement of bending formability of brittle sheet metal in multilayer metallic sheets. CIRP Ann. Manuf. Technol. 59, 287–290 (2010)CrossRefGoogle Scholar
  8. 8.
    Y. Jing, Y. Qin, X.M. Zang, Y.H. Li, The bonding properties and interfacial morphologies of clad plate prepared by multiple passes hot rolling in a protective atmosphere. J. Mater. Process. Technol. 214, 1686–1695 (2014)CrossRefGoogle Scholar
  9. 9.
    Y. Jing, Y. Qin, X.M. Zang, Q.Y. Shang, H. Song, A novel reduction-bonding process to fabricate stainless steel clad plate. J. Alloy. Compd. 617, 688–698 (2014)CrossRefGoogle Scholar
  10. 10.
    H. Pommier, E.P. Busso, T.F. Morgeneyer, A. Pineau, Intergranular damage during stress relaxation in AISI 316L-type austenitic stainless steels: effect of carbon, nitrogen and phosphorus. Acta Mater. 103, 893–908 (2016)CrossRefGoogle Scholar
  11. 11.
    R. Jones, V. Randle, G. Owen, Carbide precipitation and grain boundary plane selection in overaged type 316 austenitic stainless steel. Mater. Sci. Eng. A 496, 256–261 (2008)CrossRefGoogle Scholar
  12. 12.
    B.X. Liu, L.J. Huang, X.D. Rong, L. Geng, F.X. Yin, Bending behaviors and fracture characteristics of laminated ductile-tough composites under different modes. Compos. Sci. Technol. 126, 94–105 (2016)CrossRefGoogle Scholar
  13. 13.
    L.H. Han, L. Li, J. Sun, Ductile to brittle transition of pure Al sheet constrained by strength mismatched parallel bi-interface. Scripta Mater. 52, 1157–1162 (2005)CrossRefGoogle Scholar
  14. 14.
    J.W. Hutchinson, Necking modes in multilayers and their influence on tearing toughness. Math. Mech. Solids 19, 39–55 (2014)CrossRefGoogle Scholar
  15. 15.
    M.H. Serror, Analytical study for deformability of laminated sheet metal. J. Adv. Res. 4, 83–92 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • CuiXin Chen
    • 1
  • MingYang Liu
    • 1
  • BaoXi Liu
    • 1
  • FuXing Yin
    • 1
  • YanChun Dong
    • 1
  • Wei Fang
    • 1
  • Xin Zhang
    • 1
  1. 1.TianJin Key Laboratory of Materials Laminating Fabrication and Interfacial Controlling Technology, School of Materials Science and Engineering, Research Institute for Energy Equipment MaterialsHebei University of TechnologyTianjinChina

Personalised recommendations