Skip to main content

Preparation and Numerical Simulation of Structural Parameters of Ni–Fe Bimetallic Porous Anode Support for Solid Oxide Fuel Cells

  • Conference paper
  • First Online:
Advances in Materials Processing (CMC 2017)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Included in the following conference series:

  • 3320 Accesses

Abstract

Optimization of preparation conditions for Ni–Fe bimetallic porous anode-supported planar solid oxide fuel cells was carried out. Experimental and literature data were used to build a 3D model of an anode-supported solid oxide fuel cell. A parametric study was carried out to determine the influence of various design parameters on performance. Some operating variables, such as thickness and porosity, were changed to observe their effects on the cell performance. Increased thickness had an adverse influence on the performance of the cell, but an increase in porosity improved performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.R. Shearing, Q. Cai, J.I. Golbert, Microstructural analysis of a solid oxide fuel cell anode using focused ion beam techniques coupled with electrochemical simulation. J. Power Sources 195, 4804–4810 (2010)

    Article  CAS  Google Scholar 

  2. H.J. Dong, H.N. Jin, C.J. Kim, Microstructural optimization of anode-supported solid oxide fuel cells by a comprehensive microscale model. J. Electrochem. Soc. 153, A406–A417 (2006)

    Article  CAS  Google Scholar 

  3. O. Vasylyev, M. Brychevskyi, Y. Brodnikovskyi, The structural optimization of ceramic fuel cells. Univ. J. Chem. 4, 31–54 (2016)

    Article  Google Scholar 

  4. T. Abdullah, L. Liu, Simulation-based microstructural optimization of solid oxide fuel cell for low temperature operation. Int. J. Hydrogen Energy 41, 13632–13643 (2016)

    Article  CAS  Google Scholar 

  5. W. Li, C. Xiong, Q. Zhang, Electrochim. Acta 190, 531–537 (2016)

    Article  CAS  Google Scholar 

  6. A.L. Jumlat, P. Sathish, Optimizing anode microstructure of intermediate temperature solid oxide fuel cell based on gadolinium doped ceria. Dev. Renew. Energy Technol. 1–4 (2014)

    Google Scholar 

  7. P. Costamagna, P. Costa, E. Arato, Some more considerations on the optimization of cermet solid oxide fuel cell electrodes. Electrochim. Acta 43, 967–972 (1998)

    Article  CAS  Google Scholar 

  8. D. Bhattacharyya, R. Rengaswamy, Transport, sensitivity, and dimensional optimization studies of a tubular Solid Oxide Fuel Cell. J. Power Sources 190, 499–510 (2009)

    Article  CAS  Google Scholar 

  9. D. Bhattacharyya, R. Rengaswamy, C.Y. Finnerty, Isothermal models for anode-supported tubular solid oxide fuel cells. Chem. Eng. Sci. 62, 4250–4267 (2007)

    Article  CAS  Google Scholar 

  10. J. Shi, X. Xue, Optimization design of electrodes for anode-supported solid oxide fuel cells via genetic algorithm. J. Electrochem. Soc. 158, B143–B151 (2010)

    Article  CAS  Google Scholar 

  11. J. Shi, X. Xue, Microstructure optimization designs for anode-supported planar solid oxide fuel cells. J. Fuel Cell Sci. Technol. 8, 061006 (2011)

    Article  CAS  Google Scholar 

  12. P. Aguiar, C.S. Adjiman, N.P. Brandon, Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: model-based steady-state performance. J. Power Sources 138, 120–136 (2004)

    Article  CAS  Google Scholar 

  13. J.W. Kim, A.V. Virkar, K.Z. Fung, Polarization effects in intermediate temperature anode-supported solid oxide fuel cells. J. Electrochem. Soc. 146, 69–78 (1999)

    Article  CAS  Google Scholar 

  14. H.N. Jin, H.J. Dong, A comprehensive micro-scale model for transport and reaction in intermediate temperature solid oxide fuel cells. Electrochim. Acta 51, 3446–3460 (2006)

    Article  CAS  Google Scholar 

  15. B. Sunden, Analysis of chemically reacting transport phenomena in an anode duct of intermediate temperature SOFCs. J. Fuel Cell Sci. Technol. 3, 89–98 (2006)

    Google Scholar 

  16. J. Yuan, B. Sunden, Analysis of intermediate temperature solid oxide fuel cell transport processes and performances. J. Heat Transf. 127, 1380–1390 (2005)

    Article  CAS  Google Scholar 

  17. T. Ackmann, L.G.J.D. Haart, W. Lehnert, Modeling of mass and heat transport in plannar substrate type SOFCs. J. Electrochem. Soc. 150, A783–A789 (2003)

    Article  CAS  Google Scholar 

  18. W. Lehnert, J. Meusinger, F. Thom, Modelling of gas transport phenomena in SOFC anodes. J. Power Sources 87, 57–63 (2000)

    Article  CAS  Google Scholar 

  19. M.M. Hussain, X. Li, I. Dincer, J. Power Sources 189, 916–928 (2009)

    Article  CAS  Google Scholar 

  20. B. Todd, J.B. Young, Thermodynamic and transport properties of gases for use in solid oxide fuel cell modelling. J. Power Sources 110, 186–200 (2002)

    Article  CAS  Google Scholar 

  21. B.E. Poling, J.M. Prausnitz, J.P. O’Connell, The Properties of Gases and Liquids, fifth edn. (The McGraw-Hill Companies, New York, 2000)

    Google Scholar 

  22. J.M. Klein, Y. Bultel, S. Georges, Modeling of a SOFC fuelled by methane: from direct internal reforming to gradual internal reforming. Chem. Eng. Sci. 62, 1636–1649 (2007)

    Article  CAS  Google Scholar 

  23. K. Hou, R. Hughes, The kinetics of methane steam reforming over a Ni/α-Al2O catalyst. Chem. Eng. J. 82, 311–328 (2001)

    Article  CAS  Google Scholar 

  24. R. Suwanwarangkul, E. Croiset, E. Entchev, Experimental and modeling study of solid oxide fuel cell operating with syngas fuel. J. Power Sources 161, 308–322 (2006)

    Article  CAS  Google Scholar 

  25. R. Suwanwarangkul, E. Croiset, M.W. Fowler, Performance comparison of Fick’s Dusty-Gas and Stefan-Maxwell Models to predict the concentration overpotential of a SOFC anode. J. Power Sources 122, 9–18 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Science and Technology Project of Yunnan Province (No. 2016FB080), the National Natural Science Foundation of China (No. 51764028) and the Science and Technology Program of Yunnan Province (No. 2015RD016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gu, X., Yu, J., Ma, W., Lv, G., Kang, D., Xie, G. (2018). Preparation and Numerical Simulation of Structural Parameters of Ni–Fe Bimetallic Porous Anode Support for Solid Oxide Fuel Cells. In: Han, Y. (eds) Advances in Materials Processing. CMC 2017. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-0107-0_122

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0107-0_122

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0106-3

  • Online ISBN: 978-981-13-0107-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics