First-Principles Study of Au-Doping Effects in Hg1−xCdxTe (x = 0.25, 0.5, 0.75)

  • Xueli Sun
  • Dechun Li
  • Zhaogen Zhong
  • Shengzhi Zhao
  • Kejian Yang
  • Xiangyang Li
  • Reng Wang
  • Ji Liu
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

First-principles calculations based on density functional theory have been performed for the structural and electronic properties of Au-doped mercury cadmium telluride (MCT, Hg1−xCd x Te), using the state-of-the-art computational method with the Heyd-Scus-eria-Ernzerh (HSE) of hybrid functional to correct the band gap. Structural relaxations, charge densities, electron localization functions (ELFs), density of states (DOSs) and band structures were obtained to reveal dopant stability and doping efficiency. The bonding characteristics between Au and host atoms were discussed by analysing charge densities and ELFs. The influence of Cd composition on the electronic structure of Au-doped Hg1−xCd x Te (x = 0.25, 0.5, 0.75) was also analysed by the calculated DOSs and band structures. It is found that Hg0.75Cd0.25Te and Hg0.5Cd0.5Te are more suitable for the p-type doping than Hg0.25Cd0.75Te. Meanwhile, for both Hg1−xCd x Te and Au-doped Hg1−xCd x Te, the linear relationships between band gaps and Cd composition are presented.

Keywords

Hg1−xCdxTe First-principles Hybrid functional Au doping Electronic structures 

Notes

Acknowledgements

Project supported by National Natural Science Foundation of major research projects China (91538201), Taishan Scholar Engineering under Special Funding (ts201511020), National Science Foundation of China (61575109, 21173134, 21473103), Natural Science Foundation of Shandong Province (ZR2014FM035), and Open project of Infrared Imaging Materials and Devices Laboratory of Chinese Academy of Sciences (IIMDKFJJ-14-07).

References

  1. 1.
    A. Rogalski, Toward third generation HgCdTe infrared detectors. J. Alloy. Compd. 371, 53–57 (2004)CrossRefGoogle Scholar
  2. 2.
    R. Rehm, M. Walther, J. Fleißner, J. Schmitz, J. Ziegler, W. Cabanski, R. Breiter, Bispectral thermal imaging with quantum-well infrared photodetectors and InAs/GaSb type II superlattices. Proc. SPIE. 6206, 62060Y (2006)CrossRefGoogle Scholar
  3. 3.
    A. Rogalski, Material considerations for third generation infrared photon detectors. Infrared Phys. Technol. 50, 240–252 (2007)CrossRefGoogle Scholar
  4. 4.
    A. Rogalski, HgCdTe infrared detector material: history, status and outlook. Rep. Prog. Phy. 62, 2267–2336 (2005)CrossRefGoogle Scholar
  5. 5.
    J. Bajaj, J.M. Arias, M. Zandian, J.G. Pasko, L.J. Kozlowski, R.E. De Wames, W.E. Tennant, Molecular beam epitaxial HgCdTe material characteristics and device performance: reproducibility status. J. Electron. Mater. 24, 1076–1607 (1995)CrossRefGoogle Scholar
  6. 6.
    S.K. Ghandhi, N.R. Taskar, K.K. Parat, Indium doping of n-type HgCdTe layers grown by organometallic vapor phase epitaxy. Appl. Phys. Lett. 57, 252 (1990)CrossRefGoogle Scholar
  7. 7.
    L.Z. Sun, X. Chen, Y.L. Sun, Relaxations and bonding mechanism in Hg1 − xCdxTe with mercury vacancy defect: first-principles study. Phys. Rev. B 73, 195206 (2006)CrossRefGoogle Scholar
  8. 8.
    M.A. Berding, A. Sher, A.B. Chen, Vacancy formation and extraction energies in semiconductor compounds and alloys. J. Appl. Phys. 68, 5064–5076 (1990)CrossRefGoogle Scholar
  9. 9.
    M.A. Berding, M. van Schilfgaarde, A. She, First-principles calculation of native defect densities in Hg0.8Cd0.2Te. Phys. Rev. B 50, 1519 (1994)CrossRefGoogle Scholar
  10. 10.
    H.R. Vydyanath, J.A. Ellsworth, C.M. Devaney, Electrical Activity, mode of incorporation and distribution coefficient of group V elements in Hgl−xCdxTe grown from tellurium rich liquid phase epitxial growth solutions. J. Electron. Mater. 16, 13–25 (1987)CrossRefGoogle Scholar
  11. 11.
    C.H. Grein, J.W. Garland, S. Sivananthan, P.S. Wijewarnasuriya, F. Aqariden, M. Fuchs, Arsenic incorporation in MBE grown Hg1−xCdxTe. J. Electron. Mater. 28, 789–792 (1999)CrossRefGoogle Scholar
  12. 12.
    S. H. Wei, S.B. Zhang, Chemical trends of defect formation and doping limit in II–VI semiconductors: the case of CdTe. Phys. Rev. B66 (2002)Google Scholar
  13. 13.
    S. Sivananthan, P.S. Wijewarnauriya, F. Awariden, Mode of arsenic incorporation in HgCdTe grown by MBE. J. Electron. Mater. 26, 621–624 (1997)CrossRefGoogle Scholar
  14. 14.
    D.J. Friedman, G.P. Carey, C.K. Shih, Diffusion of Ag and Hg at the Ag/(Hg, Cd)Te interface. Appl. Phys. Lett. 48, 44–46 (1986)CrossRefGoogle Scholar
  15. 15.
    H.D. Shih, M.A. Kinch, F. Aaariden, P.K. Liao, H.F. Schaake, V. Nathan, Development of gold-doped Hg0.79Cd0.21Te for very-long-wavelength infrared detectors. Appl. Phys. Lett. 82, 4157–4159 (2003)CrossRefGoogle Scholar
  16. 16.
    A.J. Ciani, S. Ogut, I.P. Batra, Concentrations of native and gold defects in HgCdTe from first principles calculations. J. Electron. Mater. 33 (2004)CrossRefGoogle Scholar
  17. 17.
    A. Singh, A.K. Shukla., S. Jain, B.S. Yadav, R. Pal, Electrial characeriatics of electroless gold contacts on p-type Hg1−xCdxTe. Mater. Sci. Semicond. Process. 26, 294–300 (2014)Google Scholar
  18. 18.
    F. Aqariden, H.D. Shih, M.A. Kinch, H.F. Schaake, Electrical properties of low-arsenic-doped HgCdTe grown by molecular beam epitaxy. Appl. Phys. Lett. 78 (2001)CrossRefGoogle Scholar
  19. 19.
    M.C. Chen, R.A. Schiebel, Observation of a deep level in p-type Hg0.78Cd0.22Te with high dislocation density. J. Appl. Phys. 71, 5269–5271 (1992)CrossRefGoogle Scholar
  20. 20.
    J.L. Han, L.Z. Sun, X.D. Qu, Y.P. Chen, J.X. Zhong, Electronic properties of the Au impurity in Hg0. 75Cd0. 25Te: first-principles study. Phys. Rev. B 404, 131–137 (2009)Google Scholar
  21. 21.
    D.C. Li, M. Yang, Y.Q. Cai, S.Z. Zhao, Y.P. Feng, First principles study of the ternary complex model of EL2 defect in GaAs saturable absorber. Opt. Express 20, 6258 (2012)CrossRefGoogle Scholar
  22. 22.
    D.C. Li, M. Yang, Y.Q. Cai, S.Z. Zhao, Y.P. Feng, First-principles study of the effect of BiGa heteroantisites in GaAs:Bi alloy. Comp. Mater. Sci. 63, 178–181 (2012)CrossRefGoogle Scholar
  23. 23.
    D.C. Li, M. Yang, Y.Q. Cai, S.Z. Zhao, Y.P. Feng, First principles study of Bismuth alloying effects in GaAs saturable absorber. Opt. Express 20, 11574–11580 (2012)CrossRefGoogle Scholar
  24. 24.
    Q.X. Wang, J.R. Yang, T. Sun, Y.F. Wei, W.Z. Fang, L. He, Relationship between lattice parameters and compositions of molecular beam epitaxial Hg1−xCdxTe films. Acta Phys. Sin. 54, 3726–3733 (2005)Google Scholar
  25. 25.
    A. Savin, O. Jepsen, J. Flad, O.K. Andersen, H. Preuss, H.G. Schnering, Electron localization in solid-state structures of the elements: the diamond structure. Int. Ed. Engl. 31, 187–188 (1992)CrossRefGoogle Scholar
  26. 26.
    J. Lento, J.L. Mozos, R.M. Nieminen, Charged point defects in semiconductors and the supercell approximation. J. Phys. Condens. Matter 14, 2637–2645 (2002)Google Scholar
  27. 27.
    S.I. Simak, U. Haussermann, I.A. Abrikosov, O. Eriksson, J.M. Wills, S. Lidin, B. Johansson, Stability of the anomalous large-void CoSn structure. Phys. Rev. Lett. 79, 1333–1336 (1997)CrossRefGoogle Scholar
  28. 28.
    J.P. Laurenti, J. Camassel, A. Bouhemadou, Temperature dependence of the fundamental absorption edge of mercury cadmium telluride. J. Appl. Phys. 67, 6454–6460 (1990)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Xueli Sun
    • 1
  • Dechun Li
    • 2
  • Zhaogen Zhong
    • 1
  • Shengzhi Zhao
    • 2
  • Kejian Yang
    • 2
  • Xiangyang Li
    • 3
  • Reng Wang
    • 3
  • Ji Liu
    • 2
  1. 1.Naval Aviation UniversityYantaiChina
  2. 2.School of Information Science and EngineeringShandong UniversityJinanChina
  3. 3.Shanghai Institute of Technical PhysicsChinese Academy of SciencesShanghaiChina

Personalised recommendations