Skip to main content

First-Principles Calculations, Thermodynamic Calculations and Kinetic Calculations of Ultra High Strength Aluminum Alloys of Al–Zn–Mg–Cu–Zr

  • Conference paper
  • First Online:
Advances in Materials Processing (CMC 2017)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Included in the following conference series:

  • 3486 Accesses

Abstract

The research for next generation of ultra high strength aluminum alloys is focused on materials of Al–Zn–Mg–Cu–Zr. In the present paper, the Al–Zn–Mg–Cu–Zr multi-component system was studied and the formation enthalpy of strengthening precipitate η′, the phase diagram of Al–Zn–Mg–Cu–Zr, the TTT diagram and the CCT diagram calculated by using the methods of First-principles calculations, thermodynamic calculations and kinetic calculations. Based on calculated results, a set of compositions and hot process parameters including temperature zones of hot processes and critical cooling rate of solution treatment are obtained. The calculated results provide primary guidance to developing Al–Zn–Mg–Cu–Zr ultra high strength aluminum alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.A. Lukasak, R.M. Hart, Strong aluminum alloy shaves airframe weight. Adv. Mater. Process. 140, 46–49 (1991)

    CAS  Google Scholar 

  2. K.H. Chen, H.W. Liu, Z. Zhang, The improvement of constituent dissolution and mechanical properties of 7055 aluminum alloy by stepped heat treatments. J. Mater. Process. Technol. 142, 190–196 (2003)

    Article  CAS  Google Scholar 

  3. L.P. Huang, K.H. Chen, S. Li, Influence of high-temperature pre-precipitation on local corrosion behaviors of Al–Zn–Mg alloy. Scripta Mater. 56, 305–308 (2007)

    Article  CAS  Google Scholar 

  4. C.P. Ferrer, M.G. Koul, B.J. Connolly, Improvements in strength and stress corrosion cracking properties in aluminum alloy 7075 via low-temperature retrogression and re-aging heat treatments. Corrosion 59, 520–528 (2003)

    Article  CAS  Google Scholar 

  5. J.F. Li, Z. Peng, C.X. Li, Mechanical properties, corrosion behaviors and microstructures of 7075 aluminium alloy with various aging treatments. T. Nonferr. Metal. Soc. 18, 755–762 (2008)

    Article  CAS  Google Scholar 

  6. K.H. Chen, H.C. Fang, Z. Zhang, Effect of Yb, Cr and Zr additions on recrystallization and corrosion resistance of Al–Zn–Mg–Cu alloys. Mater. Sci. Eng., A 497, 426–431 (2008)

    Article  CAS  Google Scholar 

  7. H. Tanaka, H. Esaki, K. Yamada, Mechanical properties of 7475 based aluminum alloy sheets with fine subgrain structures. J. Jpn. Inst. Light Met. 52, 553–558 (2002)

    Article  CAS  Google Scholar 

  8. H. Yoshida, Y. Baba, The role of zirconium to improve strength and stress-corrosion resistance of Al–Zn–Mg and Al–Zn–Mg–Cu alloys. Trans. Jpn. Inst. Met. 23, 620–630 (1982)

    Article  Google Scholar 

  9. Y.D. He, X.M. Zhang, J.H. You, Effect of minor Sc and Zr on microstructure and mechanical properties of Al–Zn–Mg–Cu alloy. T. Nonferr. Metal. Soc. 16, 1228–1235 (2006)

    Article  CAS  Google Scholar 

  10. K. Ural, A study of optimization of heat-treatment conditions in retrogressions and reageing treatment of 7075-T6 aluminum alloy. J. Mater. Sci. Lett. 13, 383–385 (1994)

    Article  CAS  Google Scholar 

  11. S. Chayong, H.V. Atkinson, R. Kapranos, Multistep induction heating regimes for thixoforming 7075 aluminum alloy. Mater. Sci. Technol. 20, 490–496 (2004)

    Article  CAS  Google Scholar 

  12. I.J. Polmear, A trace element effect in alloys based on the Aluminium–Zinc–Magnesium system. Nature 186, 303–304 (1960)

    Article  CAS  Google Scholar 

  13. I.J. Polmear, The ageing characteristics of complex Al–Zn–Mg alloys distinctive effects of copper and silver on the ageing mechanism. J. Inst. Met. 89, 51–59 (1960)

    CAS  Google Scholar 

  14. S. Kikuchi, H. Yamazaki, T. Otsuka, J. Mater. Process. Technol. 38, 689–701 (1993)

    Article  Google Scholar 

  15. H.C. Fang, K.H. Chen, X. Chen, X, Effect of Cr, Yb and Zr additions on localized corrosion of Al–Zn–Mg–Cu alloy. Corros. Sci. 51, 2872–2877 (2009)

    Article  CAS  Google Scholar 

  16. R. Ayer, J.Y. Koo, J.W. Steeds, Microanalytical study of the heterogeneous phases in commercial Al–Zn–Mg–Cu alloys. Metall. Trans. A 16, 1925–1936 (1985)

    Article  Google Scholar 

  17. C. Ravi, C. Wolverton, First-principles study of crystal structures and stability of Al–Mg–Si–Cu precipitates. Acta Mater. 52, 4213–4217 (2004)

    Article  CAS  Google Scholar 

  18. C. Wolverton, Crystal structure and stability of complex precipitate phases in Al–Cu–Mg–Si and Al–Zn–Mg alloys. Acta Mater. 49, 3129–3142 (2001)

    Article  CAS  Google Scholar 

  19. D.D. Zhan, L.C. Zhou, Y. Kong, Structure and thermodynamics of the key precipitated phases in the Al–Mg–Si alloys from first-principles calculations. JMS 46, 7839–7849 (2011)

    Article  CAS  Google Scholar 

  20. J.L. Meijering, Retrograde solubility curves especially in alloy solid solutions. Philips Res. Rep. 3, 281–302 (1948)

    CAS  Google Scholar 

  21. L. Kaufman, H. Bernstein, Computer calculation of phase diagrams, New York, 1970. (Academic Press, 1970), pp. 85–88

    Google Scholar 

  22. N. Saunders, X. Li, A.P. Miodownik, J.-Ph. Schillé, Materials Design Approaches and Experiences (TMS, Warrendale, 2001)

    Google Scholar 

  23. P.E. Blochl, Projector augmented-wave method. Phys. Rev. B 17953, 50–51 (1994)

    Google Scholar 

  24. G. Kresse, J. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1758, 59–60 (1999)

    Google Scholar 

  25. G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio totalenergy calculations using a plane-wave basis set. Phys. Rev. B 11169, 54–55 (1996)

    Google Scholar 

  26. G. Kresse, J. Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 15, 6–7 (1996)

    Google Scholar 

  27. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  CAS  Google Scholar 

  28. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1936 (1997)

    Article  Google Scholar 

  29. J.P. Perdew, K. Burke, M. Ernzerhof, Perdew, Burke and Ernzerhof reply. Phys. Rev. Lett. 80, 889–890 (1998)

    Article  Google Scholar 

  30. H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 5188, 13–14 (1976)

    Google Scholar 

  31. M. Methfessel, A.T. Paxton, High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 3616, 40–41 (1989)

    Google Scholar 

  32. A.T. Dinsdale, SGTE data for pure elements. CALPHAD 15, 317–425 (1991)

    Article  CAS  Google Scholar 

  33. O. Redlich, A.T. Kister, Algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 40, 345–348 (1948)

    Article  Google Scholar 

  34. Information on http://www.computherm.com

  35. H.W.L. Phillips, Equilibrium diagrams of aluminum alloy systems. The Aluminum Development Association, Information Bulletin 25, London, pp. 105–108 (1961)

    Google Scholar 

  36. N. Saunders, Z. Guo, X. Li, A.P. Miodownik, J.P. Schille, Using JMatPro to model materials properties and behavior. JOM 55, 60–65 (2003)

    Article  CAS  Google Scholar 

  37. X. Li, A.P. Miodownik, N. Saunders, Modelling of materials properties in duplex stainless steels. Mater. Sci. Technol. 18, 861–868 (2002)

    Article  CAS  Google Scholar 

  38. J.H. Auld, S.M. Cousland, The structure of the metastable η′ phase in Al–Zn–Mg alloys. J. Australian Inst. Met. 19, 194–195 (1974)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Defense Industrial Technology Development Program (JCKY2016205C009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinsan Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, J., Zang, J., Xiao, X. (2018). First-Principles Calculations, Thermodynamic Calculations and Kinetic Calculations of Ultra High Strength Aluminum Alloys of Al–Zn–Mg–Cu–Zr. In: Han, Y. (eds) Advances in Materials Processing. CMC 2017. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-0107-0_118

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0107-0_118

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0106-3

  • Online ISBN: 978-981-13-0107-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics