Ultrafast Precipitation Kinetics in an Ultrafine-Grained Al–Cu Alloy Used for Oil Drill Pipes

  • Long Jiang
  • Chun Feng
  • Lihong Han
  • Yaorong Feng
  • Caihong Lu
  • Lijuan Zhu
  • Hang Wang
  • Gang Liu
  • Jun Sun
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)


In the ultrafine-grained (UFG, <1 μm) Al–Cu alloys having very poor thermal stability, only intergranular equilibrium θ-Al2Cu precipitates were found after aging treatment, which means that the precipitation was greatly accelerated even at room temperature and has directly transformed to equilibrium θ phases while bypassed the metastable phases GP zones, θ″ and θ′ as usually seen in representative precipitation transition sequence of coarse grained (CG, >10 m) Al–Cu alloy. It was found the precipitation kinetics of θ phases in the UFG Al–Cu alloy occurred at several orders of magnitude faster than that can be predicted by conventional grain boundary precipitation theory. Considering ultrafast solute diffusion at the UFG length-scale, a developed/modified precipitation kinetics model at the UFG length-scale has been established. It yields predictions in satisfied accordance with experimental aging precipitation process/parameters of UFG Al–Cu alloys.


Al–Cu alloys Ultrafine grain Precipitation behavior Thermodynamic-kinetic models 



Present work was supported by the National Basic Research Program of China (Grant No. 2010CB631003, 2012CB619600 & 2016YFB0300904), National Science and Technology Major Project (2016ZX05020-002) and the National Natural Science Foundation (51201133, 51321003, 51171142 & 51322104).


  1. 1.
    R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Prog. Mater. Sci. 45, 103 (2000)CrossRefGoogle Scholar
  2. 2.
    L. Jiang, J.K. Li, P.M. Cheng, G. Liu, R.H. Wang, B.A. Chen, J.Y. Zhang, J. Sun, M.X. Yang, G. Yang, Mater. Sci. Eng. A A637, 139–154 (2015)CrossRefGoogle Scholar
  3. 3.
    P.V. Liddicoat, X.Z. Liao, Y.H. Zhao, Y.T. Zhu, M.Y. Murashkin, E. Lavernia, R.Z. Valiev, S.P. Ringer, Nature Commun. 1, 63 (2010)CrossRefGoogle Scholar
  4. 4.
    L. Jiang, J.K. Li, P.M. Cheng, G. Liu, R.H. Wang, B.A. Chen, J.Y. Zhang, J. Sun, M.X. Yang, G. Yang, Sci. Rep. 4, 3605 (2014). Scholar
  5. 5.
    Y.H. Zhao, X.Z. Liao, Z. Jin, R.Z. Valiev, Y.T. Zhu, Acta Mater. 52, 4589 (2004)CrossRefGoogle Scholar
  6. 6.
    Y. Huang, J.D. Robson, P.B. Prangnell, Acta Mater. 58, 1643 (2010)CrossRefGoogle Scholar
  7. 7.
    L. Jiang, J.K. Li, P.M. Cheng, G. Liu, R.H. Wang, B.A. Chen, J.Y. Zhang, J. Sun, M.X. Yang, G. Yang, Mater. Sci. Eng. A A607, 596–604 (2014)CrossRefGoogle Scholar
  8. 8.
    T. Hu, K. Ma, T.D. Topping, J.M. Schoenung, E.J. Lavernia, Acta Mater. 61, 2163 (2013)CrossRefGoogle Scholar
  9. 9.
    G. Sha, Y.B. Wang, X.Z. Liao, Z.C. Duan, S.P. Ringer, T.G. Langdon, Acta Mater. 57, 3123 (2009)CrossRefGoogle Scholar
  10. 10.
    M. Murayama, Z. Horita, K. Hono, Acta Mater. 49, 21 (2001)CrossRefGoogle Scholar
  11. 11.
    J.F. Nie, B.C. Muddle, Acta Mater. 56, 3490 (2008)CrossRefGoogle Scholar
  12. 12.
    J. da Costa Teixeira, D.G. Cram, L. Bourgeois, T.J. Bastow, A.J. Hill, C.R. Hutchinson, Acta Mater. 56, 6109 (2008)CrossRefGoogle Scholar
  13. 13.
    J. da Costa Teixeira, L. Bourgeois, C.W. Sinclair, C.R. Hutchinson, Acta Mater. 57, 6075 (2009)CrossRefGoogle Scholar
  14. 14.
    G. Liu, G.J. Zhang, X.D. Ding, J. Sun, K.H. Chen, Mater. Sci. Eng., A 344, 113 (2003)CrossRefGoogle Scholar
  15. 15.
    A.W. Zhu Jr., E.A. Starke, Acta Mater. 49, 3063 (2001)CrossRefGoogle Scholar
  16. 16.
    D.L. Gilmore Jr., E.A. Starke, Metall. Mater. Trans. A 28, 1399 (1997)CrossRefGoogle Scholar
  17. 17.
    G.K. Williamson, R.E. Smallman, Philos. Mag. 1, 34 (1956)CrossRefGoogle Scholar
  18. 18.
    J. Gubicza, I. Schiller, N.Q. Chinh, J. Illy, Z. Horita, T.G. Langdon, Mater. Sci. Eng., A 460–461, 77 (2007)CrossRefGoogle Scholar
  19. 19.
    K.K. Ma, H.M. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, J.M. Schoenung, Acta Mater. 62, 141–155 (2014)CrossRefGoogle Scholar
  20. 20.
    Y. Huang, J.D. Robson, P.B. Prangnell, J. Mater. Sci. 45, 4851–4857 (2010)CrossRefGoogle Scholar
  21. 21.
    W. Lechner, W. Puff, B. Mingler, M.J. Zehetbauer, R. Würschum, Scr. Mater. 61, 383 (2009)CrossRefGoogle Scholar
  22. 22.
    D. Altenpohl, Aluminium 37, 401 (1961)Google Scholar
  23. 23.
    R.W. Balluffi, P.S. Ho, Diffusion (Metals Park, American Society of Metals, OH, 1973), p. 83Google Scholar
  24. 24.
    J.L. Murray, Int. Met. Rev. 30, 211 (1985)CrossRefGoogle Scholar
  25. 25.
    H.B. Aaron, H.A. Aaronson, Acta Metall. 16, 789 (1968)CrossRefGoogle Scholar
  26. 26.
    K.C. Russell, Acta Metall. 7, 1123 (1969)CrossRefGoogle Scholar
  27. 27.
    Y. Du, Y.A. Chang, B. Huang, W. Gong, Z. Jin, H. Xu, Mater. Sci. Eng., A 363, 140 (2003)CrossRefGoogle Scholar
  28. 28.
    Y.R. Kolobov, G.P. Grabovetskaya, M.B. Ivanov, A.P. Zhilyaev, R.Z. Valiev, Scr. Mater. 44, 873 (2001)CrossRefGoogle Scholar
  29. 29.
    X. Sauvage, G. Wilde, S.V. Divinski, Z. Horita, R.Z. Valiev, Mater. Sci. Eng., A 540, 1 (2012)CrossRefGoogle Scholar
  30. 30.
    R.A. Carolan, R.G. Faulkner, Acta Metall. 36, 257 (1988)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.CNPC Tubular Goods Research InstituteState Key Laboratory for Performance and Structure Safety of Petroleum Tubular Goods and Equipment MaterialsXi’anChina
  2. 2.State Key Laboratory for Mechanical Behavior of MaterialsXi’an Jiaotong UniversityXi’anChina

Personalised recommendations