Skip to main content

Analysis of Friction and Wear Behavior of Vacuum Nitriding on Ti80 Titanium Alloy

  • Conference paper
  • First Online:
Book cover High Performance Structural Materials (CMC 2017)

Included in the following conference series:

  • 3164 Accesses

Abstract

Titanium alloy has light weight, low young modulus, small coefficient of thermal expansion and good corrosion resistance properties. Especially for high corrosive hydrogen sulfide and carbon dioxide, titanium alloy shows excellent resistance. With the replacement of Ni based alloy with titanium alloy, titanium oil pipes have become one of the development directions of high temperature and high pressure wells. Recently, the titanium alloy tubing has been used in Yuanba gasfield, indicating that titanium alloy tubing has entered a practical stage in China. However, because of the low hardness, high friction factor, poor wear resistance, serious adhesive wear, the erosion of crude oil and the friction of the sucker rod have a great influence on the wear properties of the titanium alloy tubing. These deficiencies will become one of the main constraint factors for the development of titanium alloy oil tubes. In order to solving this problem, in the present paper we improved the tribological performance by means of ion nitriding on Ti80 alloy. The microstructure, surface morphology, hardness tester and wear resistance of the material were analyzes by means of XRD, SEM, Vickers hardness tester and wear and abrasion tester. The results showed that the tribological performance of Ti80 alloy oil tubes is improved by ion nitriding process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Wang, A. Fan, J. Long, Y. Si, A study on corrosion behavior of titanium alloy, Journal of Kunming University of Science and Technology. 20 (1995) 75–80.

    Google Scholar 

  2. X. Lv, Y. Shu, G. Zhao, J. Xie, Y. Xue, Research and Application Progress of Ti Alloy Oil Country Tubular Goods, Rare. Metal. Mat. Eng. 43 (2014) 1518–1524.

    Google Scholar 

  3. X. Shi, X. Zhou, Status Quo of Research on Properties of Titanium Alloy OCTG and Relevant Application Evaluation, Steel. Pipe. 44 (2015) 10–14.

    Google Scholar 

  4. Q. Liu, S. Song, D. Li, Q. Bai, Research and development of titanium alloy OCTG application in energy industry, Oil. Field. Equipment. 43 (2014) 88–94.

    Google Scholar 

  5. X. Yao, F. Xie, Y. Han, G. Zhao, X. Wu, Comparison of friction wear properties between TC4 titanium alloy and P110 tubing steel, Rare. Metal. Mat. Eng. 41 (2012) 1539–1544.

    Google Scholar 

  6. Y. Mao, X. Cui, S. Wang, D. Li, Z. Yang, Y. Sun, Wear and friction characteristics of Ti6Al4 V alloy, J. Aeronaut. Mater. 33 (2013) 41–45.

    Google Scholar 

  7. G. Straffelini, A. Molinari, Dry sliding wear of Ti–6Al–4 V alloy as influenced by the counterface and sliding conditions, Wear. 236 (1999) 328–338.

    Google Scholar 

  8. K.G. Budinski, Tribological properties of titanium alloys, Wear. 151 (1991) 203–217.

    Google Scholar 

  9. P. Jiang, X. Meng, Y. Liu, S. Shao, X. Meng, Effects of forge technology on microstructure and mechanical properties of Ti80 alloy, Rare. Metal. Mat. Eng. 34 (2005) 286–288.

    Google Scholar 

  10. H. Sun, Y. Yang, J. Wu, Y. Luo, F. Song, W. Zhou, Large-diameter seamless tube of Ti80 alloy fabricated by roll piercing, Chin. J. Nonferrous. Met. 23 (2013) 358–363.

    Google Scholar 

  11. A. Guo, Y. Wu, Q. Chen, E. Ning, Microstructure evolution during aging and its effect on mechanical properties of Ti80 alloy, Chin. J. Nonferrous. Met. 23 (2013) 506–512.

    Google Scholar 

  12. J. Magnan, G. Weatherly, M. Cheynet, The Nitriding Behavior of Ti-Al Alloys at 1000°C, Metallurgical and Materials Transactions. 30 (1999) 19–29.

    Google Scholar 

Download references

Acknowledgements

The authors thank the National Key R&D Program of China (2016YFB0301201) and International Science & Technology Cooperation Program of Shaanxi Province (2015KW-020) for the support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, L., Mao, X., Hong, Q. (2018). Analysis of Friction and Wear Behavior of Vacuum Nitriding on Ti80 Titanium Alloy. In: Han, Y. (eds) High Performance Structural Materials. CMC 2017. Springer, Singapore. https://doi.org/10.1007/978-981-13-0104-9_49

Download citation

Publish with us

Policies and ethics