Effect of Zr Content on Microstructure and Mechanical Properties of Al–Mg–Si–Cu Alloy

  • Y. P. Sun
  • X. H. Zhou
  • W. B. Xu
  • J. M. He
  • W. X. Wang
Conference paper


Effect of Zr content on microstructure and mechanical properties of Al–Mg–Si–Cu alloy were investigated by means of metallograph microscope, tensile test and transmission electron microscopy (TEM). The results show that the main precipitate is AlCuMgSi phase in Al–Mg–Si–Cu alloy after cold rolling. Zr element plays a dominant role in refinement of grains. With the increase of Zr content, numerous dislocations are found in Al–Mg–Si–Cu alloy, together with a large amount of complex phase containing Zr element precipitate within the grains. When the content of Zr is 0.7%, the tensile strength and elongation of Al–Mg–Si–Cu alloy are 490 MPa and 10%, respectively.


Al–Mg–Si–Cu Zr Microstructure Mechanical properties 



The authors gratefully acknowledge the support of National Natural Science Foundation of China (NO. 51561004) and Guangxi Science Foundation (NO. 2016GXNSFDA380008).


  1. 1.
    H. Li, X. L. Wang, Z. X. Shi, et al, Precipitation behaviors of Al-Mg-Si-(Cu) aluminum alloys during continuous heating, Chin. J. of Nonferrous Met. 21 (2011) 2028–2034.Google Scholar
  2. 2.
    H. C. Yuan, C. Wang, J. S. Zhang, Microstructural characteristics and aging response of Zn-containing Al-Mg-Si-Cu alloy, Inter. J. of Miner. Metal. and Mater. 20 (2013) 659–664.Google Scholar
  3. 3.
    G. Wang, J. Zhou, Z. W. Liu, et al, Lightweight design and crash performance analysis of automotive aluminum bumper, Chin. J. of Nonferrous Met. 22 (2012) 90–98.Google Scholar
  4. 4.
    S. Esmaeili, X. Wang, D. J. Lloyd, et al, On the precipitation-hardening behavior of the Al-Mg-Si-Cu alloy AA6111, Metal. Mater. Trans. A 34 (2003) 751–763.Google Scholar
  5. 5.
    W. Yang, M. Wang, Y. Jia, et al, Studies of orientations of β″ precipitates in Al-Mg-Si-(Cu) alloys by electron diffraction and transition matrix analysis, Metal. Mater. Trans. A 42 (2011) 2917–2929.Google Scholar
  6. 6.
    J. C. Williams, E. A. Starke, Progress in structural materials for aerospace systems, Acta Mater. 51 (2003) 5775–5799.Google Scholar
  7. 7.
    Y. Meng, Z. Zhao, J. Cui, Effect of minor Zr and Sc on microstructures and mechanical properties of Al-Mg-Si-Cu-Cr-V alloys, T Nonferr. Metal. Soc. 23 (2013) 1882–1889.Google Scholar
  8. 8.
    G. Svenningsen, M. H. Larsen, J. C. Walmsley, et al, Effect of artificial aging on intergranular corrosion of extruded AlMgSi alloy with small Cu content, Corros. Sci. 48 (2006) 1528–1543.Google Scholar
  9. 9.
    Y. Meng, J. Cui, Z. Zhao, et al, Effect of vanadium on the microstructures and mechanical properties of an Al-Mg-Si-Cu-Cr-Ti alloy of 6×××series, J. Alloys and Compd. 573 (2013) 102–111.Google Scholar
  10. 10.
    A. Bahrami, A. Razaghian, M. Emamy, et al, The effect of Zr on the microstructure and tensile properties of hot-extruded Al-Mg2Si composite, Mater. Design 36 (2012) 323–330.Google Scholar
  11. 11.
    V. Ocenasek, M. Slamova, Resistance to recrystallization due to Sc and Zr addition to Al-Mg alloys, Mater. Charact. 47 (2001) 157–162.Google Scholar
  12. 12.
    L .Z. He, X. B. Zhang, J. Z. Cui, Investigation of heat treatment of a 6013 aluminium type alloy, Aerosp. Mater. Technol. 29 (1999) 42–45+60.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Y. P. Sun
    • 1
  • X. H. Zhou
    • 1
  • W. B. Xu
    • 1
  • J. M. He
    • 1
  • W. X. Wang
    • 1
  1. 1.School of Mechanical EngineeringGuang Xi University of Science and TechnologyLiuzhouChina

Personalised recommendations