Synthesis of Beryllium Pebbles Using Plasma Rotating Electrode Process

  • Yumei Jia
  • Yongjin Feng
  • Jianli Zhang
  • Pingping Liu
  • Qian Zhan
  • Farong Wan
Conference paper

Abstract

Beryllium is used as neutron multiplier in the form of a pebble bed. Basic characteristics of the beryllium pebbles are required to the design of blanket. From this point view, production methods and basic characteristics including particle morphology and mechanical properties of beryllium pebbles were investigated. The paper gives a brief description of fabrication technology for the Be pebbles. The Plasma Rotating Electrode Process (PREP) is the method for producing 1–1.2 mm Be pebbles for use as a neutron multiplier. The obtained results indicate the advantages for the fabrication of Be pebbles and the excellent properties of the pebbles.

Keywords

Be pebbles Neutron multiplier Fusion reactor Particle properties Fabrication 

References

  1. 1.
    Materion Corporation. UHP 999 high purity grade beryllium [EB/OL]. http://materion.com/~/media/files/pdfs/beryllium/specsheets/uhp-9999.pdf. 2012-03-13.
  2. 2.
    A. A. Frans Moons, s. Leo, R. August, J. V. De Velde. Neutron irradiated beryllium: tensile strength and swelling[J]. Journal of Nuclear Materials, 233/237(2) (1996) 823–827.Google Scholar
  3. 3.
    J. H. You, H. Bolt. Thermal stress intensity factor of interfacial cracks of a plasma facing component under high heat flux loading[J]. Fusion Engineering and Design, 65(4) (2003) 483–492.Google Scholar
  4. 4.
    J. Reimann, H. Harsch. Thermal creep of beryllium pebble beds[J]. Fusion Engineering and Design, 75/79 (2005) 1043–1047.Google Scholar
  5. 5.
    A. Nikroo, H.W. Xu, K.A. Moreno, K.P. Youngblood, J. Cooley, C.S. Alford, S.A. Letts, and R.C. Cook. Investigation of deuterium permeability of sputtered beryllium and graded copper-doped beryllium shells[J]. Fusion Engineering and Design, 51(4) (2007) 553–558.Google Scholar
  6. 6.
    H. Kawamura, M. Uchida, U. Minoru. Material for nuclear fusion furnace excellent in high temperature characteristics comprising beryllium intermetallic compound: EU 1494244A1[P]. 2007-12-12.Google Scholar
  7. 7.
    S. Tanakaa, Y. Oharab, H. Kawamura. Blanket R&D activities in Japan towards fusion power reactors [J]. Fusion Engineering and Design, 51/52 (2000) 299–307.Google Scholar
  8. 8.
    E. Ishitsuka, H. Kawamura. Thermal and mechanical properties of beryllium pebbles [J]. Fusion Engineering and Design, 27 (1995) 263–268.Google Scholar
  9. 9.
    M. Dalle Donnea, A. Goraiebb, G. Piazzaa, F. Scaffidi-Argentinaa. Experimental investigations on the thermal and mechanical behavior of a binary beryllium pebble bed[J]. Fusion Engineering and Design, 49/50 (2000) 521–528.Google Scholar
  10. 10.
    E. Ishitsuka, H. Kawamura, T. Teraib, S. Tanaka. Compression properties of neutron irradiated beryllium pebbles[J]. Fusion Engineering and Design, 51/52 (2000) 123–126.Google Scholar
  11. 11.
    ITER materials properties Handbook, ITER doc. No.G74MA900-11-10W0.1.Google Scholar
  12. 12.
    ITER materials properties Handbook, ITER doc. No.G74MA1001-17-11W0.2.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Yumei Jia
    • 1
  • Yongjin Feng
    • 2
  • Jianli Zhang
    • 3
  • Pingping Liu
    • 1
  • Qian Zhan
    • 1
  • Farong Wan
    • 1
  1. 1.School of Materials Science and EngineeringUSTBBeijingChina
  2. 2.Southwestern Institute of PhysicsChengduChina
  3. 3.Baoji Haibao Special Metal Materials Co. Ltd.BaojiChina

Personalised recommendations