Effect of Zr Addition on Localized Corrosion Behavior of Al–Zn–Mg Alloy

  • S. D. Liu
  • W. R. Chai
  • Q. Wang
  • Q. L. Pan
  • A. D. Li
  • Y. L. Deng
  • X. M. Zhang
Conference paper

Abstract

The effects of Zr addition on localized corrosion resistance of Al–Zn–Mg alloy were investigated by means of intergranular corrosion (IGC) immersion and exfoliation corrosion (EXCO) immersion tests. The mechanism was discussed based on microstructural characterization by optical microscopy (OM) and scanning transmission electron microscopy (STEM). The results showed that Al–Zn–Mg–Zr alloy exhibited a smaller intergranular corrosion depth and exfoliation corrosion depth than Al–Zn–Mg alloy. Zr inhibited recrystallization and refines grains. The subgrain boundaries could retard the propagation of corrosion. Compared with Al–Zn–Mg alloy, Al–Zn–Mg–Zr alloy has lower Zn and Mg content of the grain boundary precipitates and narrower precipitate free zone near grain boundaries.

Keywords

Aluminium Localized corrosion Recrystallization STEM 

Notes

Acknowledgements

The authors wish to acknowledge the financial support of Science and Technology Major Project of Hunan Province, China (2016GK1004).

References

  1. 1.
    G.Q. Gou, N. Huang, H. Chen, Research on stress corrosion behavior of A7N01S-T5 aluminum alloy for high speed train, Materials science & technology. 20 (2012) 134–139.Google Scholar
  2. 2.
    R.G. Song, W. Dietzel, B.J. Zhang, Stress corrosion cracking and hydrogen embrittlement of an Al-Zn-Mg-Cu alloy, Acta Materialia. 52 (2004) 4727–4743.Google Scholar
  3. 3.
    F.X. Song, X.M. Zhang, S.D. Liu, The effect of quench rate and overageing temper on the corrosion behaviour of AA7050, Corrosion Science. 78 (2014) 276–286.Google Scholar
  4. 4.
    Y. Reda, R. Abdel-Karim, I. Elmahallawi, Improvements in mechanical and stress corrosion cracking properties in Al-alloy 7075 via retrogression and reaging, Materials Science and Engineering: A. 485 (2008) 468–475.Google Scholar
  5. 5.
    O.N. Senkov, M.R. Shagiev, S.V. Senkova, Precipitation of Al3(Sc,Zr) particles in an Al-Zn-Mg-Cu-Sc-Zr alloy during conventional solution heat treatment and its effect on tensile properties, Acta Materialia. 56 (2008) 3723–3738.Google Scholar
  6. 6.
    W.B. Li, Q.L. Pan, L. Zou, Effects of minor Sc on the microstructure and mechanical properties of Al-Zn-Mg-Cu-Zr based alloys, Rare Metals. 28 (2009) 102–106.Google Scholar
  7. 7.
    G.S. Wang, Z.H. Zhao, Y.H. Zhang, Effects of solution treatment on microstructure and mechanical properties of Al-9.0Zn-2.8Mg-2.5Cu-0.12Zr-0.03Sc alloy, Transactions of Nonferrous Metals Society of China. 23 (2013) 2537–2542.Google Scholar
  8. 8.
    S.H. Wang, L.G. Meng, S.J. Yang, Microstructure of Al-Zn-Mg-Cu-Zr-0.5Er alloy under as-cast and homogenization conditions, Transactions of Nonferrous Metals Society of China. 21 (2011) 1449–1454.Google Scholar
  9. 9.
    W.J. Zhang, W.C. Ren, Z.Z. Deng, Effect of Zirconium on the microstructure and mechanical properties of super-high strength aluminum alloys, Nonferrous Metals Processing. 42 (2013) 8–14.Google Scholar
  10. 10.
    H.C. Fang, H. Chao, K.H. Chen, Microstructures, Fracture and Localized Corrosion Behaviors of Al-Zn-Mg-Cu Alloy with Zr, Yb and Cr Additions, Chinese Journal of Rare Metals. 39 (2015) 686–695.Google Scholar
  11. 11.
    M.C. Huang, Effect of grain structure on intergranular corrosion resistance of 7475 aluminum alloy, Mining and Metallurgical Engineering. 30 (2010) 97–99.Google Scholar
  12. 12.
    J.D. Robson, P.B. Prangnell, Predicting recrystallised volume fraction in aluminium alloy 7050 hot rolled plate, Materials Science and Technology. 18 (2002) 607–614.Google Scholar
  13. 13.
    X.M. Zhang, S.D. Liu, Y. Liu, Influence of quench rate and zirconium content on intergranular corrosion of 7055 type aluminum alloy, J. Cent. South Univ. (Science and technology). 38 (2007) 181–185.Google Scholar
  14. 14.
    C.B. Li, X.M. Zhang, S.D. Liu, Quench sensitivity relative to rxfoliation corrosion of 7085 aluminum alloy, Chinese Journal of Materials Research. 27 (2013) 454–460.Google Scholar
  15. 15.
    S.D. Liu, B. Chen, C.B. Li, Mechanism of low exfoliation corrosion resistance due to slow quenching in high strength aluminium alloy, Corrosion Science. 91 (2015) 203–212.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • S. D. Liu
    • 1
    • 2
    • 3
  • W. R. Chai
    • 1
    • 2
    • 3
  • Q. Wang
    • 1
    • 2
    • 3
  • Q. L. Pan
    • 1
    • 2
    • 3
  • A. D. Li
    • 4
  • Y. L. Deng
    • 1
    • 2
    • 3
  • X. M. Zhang
    • 1
    • 2
    • 3
  1. 1.School of Materials Science and EngineeringCentral South UniversityChangshaChina
  2. 2.Key Laboratory of Nonferrous Metal Materials Science and EngineeringMinistry of EducationChangshaChina
  3. 3.Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation CenterChangshaChina
  4. 4.Suntown Technology Group Co., Ltd.ChangshaChina

Personalised recommendations