Flow Behaviors and Corresponding Constitutive Equation of the Al–9.4Zn–1.9Mg–2.0Cu Alloy

  • Guohui Shi
  • Yong’an Zhang
  • Xiwu Li
  • Zhihui Li
  • Shuhui Huang
  • Lizhen Yan
  • Hongwei Yan
  • Hongwei Liu
Conference paper


Isothermal compression tests of the Al–9.4Zn–1.9Mg–2.0Cu alloy were carried out at the temperature ranging from 300 to 460 °C and the strain rate from 0.001 to 10 s−1, and the deformation degree was 70%. Flow stress curves show that the flow stress decreases with the increasing deformation temperature and the decreasing strain rate. The measured flow stress was corrected because of the effect of friction. The corresponding corrected stress values are lower than measured stress values. The effect of friction is far greater when hot-deformations occurred at lower temperatures or higher strain rates. A constitutive equation considering the effect of strain on material constants (i.e. α, n, Q and A) are established based on the Arrhenius-type equation. Compared with the experimental results, the flow stresses calculated by the constitutive equation have a high precision with the correlation coefficient of 0.95. Results show that higher deformation temperatures and lower strain rates are beneficial for hot deformation of the Al–9.39Zn–1.92Mg–1.98Cu alloy.


The Al–9.4Zn–1.9Mg–2.0Cu alloy Hot deformation Flow behaviors Constitutive model 



This study was financially supported by the National Key and Development Program of China (No. 2016YFB0300803, 2016YFB0300903).


  1. 1.
    G Chen, L Chen, G Zhao, C Zhang, W Cui 2017 J. J Alloy Compd. 710 80–91.Google Scholar
  2. 2.
    Zener, C. and J.H. Hollomon 1944 J. Journal of Applied Physics. 15 22–32.Google Scholar
  3. 3.
    Xiao D, Peng X, Liang X, et al 2017 J. Met Mater-Int. 23 591–602.Google Scholar
  4. 4.
    Samantaray D, Mandal S, Bhaduri A K 2009 J. Comp Mater Sci. 47 (2) 568–576.Google Scholar
  5. 5.
    Lin Y C, Chen X M 2011 J. Mater Design. 32 (4) 1733–1759.Google Scholar
  6. 6.
    Sellars C M, Tegart W J M G 1972 J. Int Mater Rev. 17 (1) 1–24.Google Scholar
  7. 7.
    Li J, Li F, Cai J, et al 2012 J. Mater Design. 42 369–377.Google Scholar
  8. 8.
    Dong Y, Zhang C, Zhao G, et al 2016 J. Mater Design. 92 983–997.Google Scholar
  9. 9.
    Lin Y C, Liang Y J, Chen M S, et al 2017 J. Appl Phys A-Mater. 123 68.Google Scholar
  10. 10.
    Das S K, Kaufman J G 2008 J. Recycling aluminum aerospace alloys [J]. Adv Mater Process. 166 34.Google Scholar
  11. 11.
    Williams, J.C. and E.A. Starke 2003 J. Acta Mater. 51 (19) 5775–5799.Google Scholar
  12. 12.
    Heinz A, Haszler A, Keidel C, et al 2000 J. Mat Sci Eng A-Struct. 280 (1) 102–107.Google Scholar
  13. 13.
    Shi, C. and X.G. Chen 2016 J. Mat Sci Eng A-Struct. 650 197–209.Google Scholar
  14. 14.
    Shi, C., W. Mao and X.G. Chen 2013 J. Mat Sci Eng A-Struct. 571 83–91.Google Scholar
  15. 15.
    Liu X, Han S, Chen L, et al 2017 J. Metall Mater Trans A. 48 (5) 2336–2348.Google Scholar
  16. 16.
    Ebrahimi R, Najafizadeh A 2004 J. J Mater Process Tech. 152 (2) 136–143.Google Scholar
  17. 17.
    Lin Y C, Xia Y C, Chen X M, et al 2010 J. Comp Mater Sci. 50(1) 227–233.Google Scholar
  18. 18.
    Mirzadeh, H 2015 J. J Mater Eng Perform. 24(3) 1095–1099.Google Scholar
  19. 19.
    Wang S, Luo J R, Hou L G, et al 2016 J. Mater Design. 107 277–289.Google Scholar
  20. 20.
    Rokni M R, Zarei-Hanzaki A, Roostaei A A, et al 2011 J. Mater Design. 32(4) 2339–2344.Google Scholar
  21. 21.
    Li J, Jian S, Yan X D, et al 2010 J. T Nonferr Metal Soc. 2 (2) 189–194.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Guohui Shi
    • 1
  • Yong’an Zhang
    • 1
  • Xiwu Li
    • 1
  • Zhihui Li
    • 1
  • Shuhui Huang
    • 1
  • Lizhen Yan
    • 1
  • Hongwei Yan
    • 1
  • Hongwei Liu
    • 1
  1. 1.State Key Laboratory of Non-Ferrous Metals and ProcessGeneral Research Institute for Non-Ferrous MetalsBeijingChina

Personalised recommendations