Advertisement

Homogenization Treatment and Kinetic Analysis of 2297 Al–Li Alloy

  • ShengLi Yang
  • Jian Shen
  • Peng Jiang
  • PeiYue Li
  • Yan Yu
  • DeJun Song
  • Huan Tao
  • Wei Guo
  • Wen Fu
Conference paper

Abstract

The microstructure evolution and composition distribution of the industrially cast 2297 Al–Li alloy during single-stage and double-stage homogenization were investigated by means of optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and differential scanning calorimetry (DSC). The results show that severe dendrite segregation exists in the as-cast alloy. Cu, Fe and Mn elements have obvious segregation at grain boundaries, and the degree of enrichment decreases gradually from grain boundary to intracrystal. The undissolved phases in the grain boundaries are mainly Al2Cu phase and Fe and Mn containing phase. The optimal single-stage homogenization treatment system is 525 °C × 24 h. And the optimal double-stage homogenization system is 460 °C × 20 h + 525 °C × 24 h. After double-stage homogenization treatment, non-equilibrium eutectic phase on the grain boundary fully dissolved, and the segregation of dendrite is eliminated. At the same time, the size of Al3Zr particles is uniform and distributed dispersion, while no dissolved Fe and Mn containing phase is found at grain boundaries. The mechanism of the double-stage homogenization treatment agrees with the results of kinetic analysis.

Keywords

2297 Al–Li alloy Dendrite segregation Homogenization treatment Kinetic analysis 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51402264).

References

  1. 1.
    X. Liu, Z.Y Liu, D.E Yu, C.W. Liu, P. Xia, Microstructure and analysis of Al3Zr precipitate of homogenized annealing 2099 aluminum–lithium alloy, Mater Sci Eng of Pow Met. (2013).Google Scholar
  2. 2.
    R.J. RIOJA, J. Liu, The evolution of Al-Li base products for aerospace and space applications, Metall Mater Trans A, 43 (2012) 3325–3337.Google Scholar
  3. 3.
    J.F. Li, Z.Q Zhang, W.D Ren, W.J Chen, X.S Zhao, S.C Li, Simulation on function mechanism of T1(Al2CuLi) precipitate in localized corrosion of Al–Cu–Li alloys, Trans. Nonferrous Met. Soc. China. 16 (2006) 1268–1273.Google Scholar
  4. 4.
    R. YOSHIMURA, T.J. KONNO, E. ABE, K. HIRAGA, Transmission electron microscopy study of the evolution of precipitates in aged Al–Li–Cu alloys: The θ’ and T1 phases, Acta Mater. 14 (2003) 4251–4262.Google Scholar
  5. 5.
    B. Li, Q. Pan, Z. Yin, Characterization of hot deformation behavior of as-homogenized Al–Cu–Li–Sc–Zr alloy using processing maps, Mater. Sci. Eng. A. 614 (2014) 199–206.Google Scholar
  6. 6.
    Z.W. Wu, Y. Chen, L. Meng, Microstructure and properties of Cu–Fe microcomposites with prior homogenizing treatments, J Alloy Compd. 418 (2009) 236–240.Google Scholar
  7. 7.
    L.M. Wu, W.H. Wang, Y.F. Hsub, S Trong, Effects of homogenization treatment on recrystallization behavior and dispersoid distribution in an Al–Zn–Mg–Sc–Zr alloy, J Alloy Compd. 456 (2008) 163–169.Google Scholar
  8. 8.
    Y. Totik, R. Sadeler, I. Kaymaz, M. Gavgali, The effect of homogenization treatment on cold deformations of AA 2014 and AA 6063 alloys, Mater Process Tech.147 (2004) 60–64.Google Scholar
  9. 9.
    X.Y. Liu, Q.L. Pan, X. Fan, Y.B. He, W.B. Li, W.J. Liang, Microstructural evolution of Al–Cu–Mg–Ag alloy during homogenization, J Alloy Compd. 484 (2009) 790–794.Google Scholar
  10. 10.
    W.X. Song, Metallography, Metallurgical industry press, Beijing, 2010.Google Scholar
  11. 11.
    Y. Lin, Z.Q. Zheng, H.F. Zhang, Y. Han, X. Kong, Homogenization process of 2099 Al–Li alloys, J Cent South Univ. 44 (2013) 4429–4435.Google Scholar
  12. 12.
    Y.H. Lu, Effect of homogenization system on Microstructure and mechanical properties of 7055 aluminum alloy, Central South University press, Hunan, 2012.Google Scholar
  13. 13.
    J.D. Robson, P.B. Prangnell, Dispersoid precipitation and process modelling in zirconium containing commercial aluminium alloys, Acta Mater. 49 (2001) 599–613.Google Scholar
  14. 14.
    T. Ujihara, K. Fujiwara, G. Sazaki, New method for measurement of interdiffusion coefficient in high temperature solutions based on Fick’s first law, J Cryst Growth. 241 (2002) 387–394.Google Scholar
  15. 15.
    S.N. Samara, G.N. Haidemenopoulos, Modelling of microsegregation and homogenization of 6061 extrudable Al-alloy, J Mater Process Tech. 194 (2007) 63–73.Google Scholar
  16. 16.
    H.Y. Li, X.J. Su, H. Yin, Microstructural evolution during homogenization of Al–Cu–Li–Mn–Zr–Ti alloy, Trans. Nonferrous Met. Soc. China. 23 (2013) 2543–2550.Google Scholar
  17. 17.
    F. Xie, X. Yan, L. Ding, A study of microstructure and microsegregation of aluminum 7050 alloy, Mater. Sci. Eng. A. 355 (2003) 144–153.Google Scholar
  18. 18.
    F. Zhang, J. Shen, X.D. Yan, Homogenization heat treatment of 2099 Al–Li alloy, Rare Metals. 33 (2014) 28–36.Google Scholar
  19. 19.
    Y. Deng, Z. Yin, F. Cong, Intermetallic phase evolution of 7050 aluminum alloy during homogenization, Intermetallics. 26 (2012) 114–121.Google Scholar
  20. 20.
    L.L. Rokhlin, T.V. Dobatkina, N.R. Bochvar, Investigation of phase equilibria in alloys of the Al–Zn–Mg–Cu–Zr–Sc system, J Alloy Comp, 367 (2004) 10–16.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • ShengLi Yang
    • 1
  • Jian Shen
    • 2
  • Peng Jiang
    • 1
  • PeiYue Li
    • 2
  • Yan Yu
    • 1
  • DeJun Song
    • 1
  • Huan Tao
    • 1
  • Wei Guo
    • 1
  • Wen Fu
    • 1
  1. 1.Luoyang Ship Material Research InstituteLuoyangChina
  2. 2.State Key Laboratory of Nonferrous Metals and ProcessesGeneral Research Institute for Nonferrous MetalsBeijingChina

Personalised recommendations