Modeling and Simulation of Dynamic Recrystallization Behaviors of 7085 Aluminum Alloy During Hot Deformation Using Cellular Automata Method

  • Jie Zhang
  • Zhihui Li
  • Shuhui Huang
  • Xiwu Li
  • Lizhen Yan
  • Hongwei Yan
  • Hongwei Liu
  • Yongan Zhang
  • Baiqing Xiong
Conference paper

Abstract

Cellular Automata (CA) method can be used to simulate the microstructure evolution. The parameters of the CA model and thermal deformation parameters are input to the CA model as important data. The hot deformation behavior was studied by means of a hot simulating test on Geleeble-1500 experiment machine. The range of thermal deformation temperature is 623–723 K, the range of strain rate is 0.001–1 s−1 and the maximum true strain is 0.91. Analysis of microstructure of average grain size and recrystallization fraction by optical microscope (OM) and electron backscatter diffraction (EBSD). CA model was used to study the effects of strain, strain rate and deformation temperature on the deformed microstructure. The simulation results are validated by a great deal of experimental data, the simulation results are in good agreement with the experimental data that shows the feasibility and predictability of the CA method.

Keywords

Cellular automaton Aluminum alloy Microstructure evolution Hot deformation 

Notes

Acknowledgements

This work was supported by the National Key and Development Program of China (No. 2016YFB0300803, 2016YFB0300903).

References

  1. 1.
    W. Liu, H. Zhao, D. Li, Z. Zhang, G. Huang, Q. Liu, Hot deformation behavior of AA7085 aluminum alloy during isothermal compression at elevated temperature, Mater. Sci. Eng., A. 596 (2015) 176–182.Google Scholar
  2. 2.
    C.Y. Lin, X.M. Chen, M.S. Chen, Y. Zhou, D.X. Wen, D.G. He, A new method to predict the metadynamic recrystallization behavior in a typical nickel-based superalloy, Appl. Phys. A. 122 (2016) 1–44.Google Scholar
  3. 3.
    M. Zouari, N. Bozzolo, R.E. Loge. Mean field modelling of dynamic and post-dynamic recrystallization during hot deformation of Inconel 718 in the absence of δ phase particles, Mater. Sci. Eng. A. 655 (2016) 408–424.Google Scholar
  4. 4.
    N.M. Han, X.M. Zhang, S.D. Liu, D.G. He, R. Zhang, Effect of solution treatment on the strength and fracture toughness of aluminum alloy 7050, J. Alloys Compd. 509 (2011) 4138–4145.Google Scholar
  5. 5.
    M.B. Kannan, V.S. Raja, Enhancing stress corrosion cracking resistance in Al-Zn-Mg-Cu-Zr alloy through inhibiting recrystallization, Eng Fract Mech. 77 (2010) 249–256.Google Scholar
  6. 6.
    D. Li, D.Z. Zhang, S.D Liu, Z.J. Shan, X.M. Zhang, Q. Wang, Dynamic recrystallization behavior of 7085 aluminum alloy during hot deformation, T Nonferr Metal Soc. 26 (2016) 1491–1497.Google Scholar
  7. 7.
    D.S. Svyetlichnyy. Reorganization of cellular space during the modeling of the microstructure evolution by frontal cellular automata, Comp Mater Sci. 60 (2012) 153–162.Google Scholar
  8. 8.
    S.I. Kim, Y. Lee, D.L. Lee, Y.C. Yoo, Modeling of AGS and recrystallized fraction of microalloyed medium carbon steel during hot deformation, Mater. Sci. Eng., A. 355 (2003) 384–393.Google Scholar
  9. 9.
    B. Radhakrishnan, G. Sarma, T. Zacharia, Monte Carlo simulation of deformation substructure evolution during recrystallization, Scripta Mater. 39 (1998) 1639–1645.Google Scholar
  10. 10.
    T. Takaki, Y. Hisakuni, T. Hirouchi, A. Yamanaka, Y. Tomita, Multi-phase-field simulations for dynamic recrystallization, Comp Mater Sci. 45 (2009) 881–888.Google Scholar
  11. 11.
    C. Zheng, N. Xiao, D. Li, Y. Li, Microstructure prediction of the austenite recrystallization during multi-pass steel strip hot rolling: A cellular automaton modeling, Comp Mater Sci. 44 (2009) 507–514.Google Scholar
  12. 12.
    A. Timoshenkov, P. Warczok, M. Albu, J. Klarner, E. Kozeschnik, R. Bureau, Modelling the dynamic recrystallization in C-Mn micro-alloyed steel during thermo-mechanical treatment using cellular automata, Comp Mater Sci. 94 (2014) 85–94.Google Scholar
  13. 13.
    F. Chen, Z. Cui, J. Liu, W. Chen, S. Chen, Mesoscale simulation of the high-temperature austenitizing and dynamic recrystallization by coupling a cellular automaton with a topology deformation technique, Mater. Sci. Eng., A. 527 (2010) 5539–5549.Google Scholar
  14. 14.
    N. Shen, A. Samanta, H. Ding, Microstructure Simulations for Orthogonal Cutting via a Cellular Automaton Model, Procedia CIRP. 58 (2017) 543–548.Google Scholar
  15. 15.
    R. Ding, Z.X. Guo, Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization, Acta Mater. 49 (2001) 3163–3175.Google Scholar
  16. 16.
    F.J. Humphreys, A unified theory of recovery, recrystallization and grain growth, based on the stability and growth of cellular microstructures-I. The basic model, Acta Mater. 45 (1997) 4231–4240.Google Scholar
  17. 17.
    H. Hallberg, M. Wallin, M. Ristinmaa. Simulation of discontinuous dynamic recrystallization in pure Cu using a probabilistic cellular automaton, Comp Mater Sci. 49 (2010) 25–34.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Jie Zhang
    • 1
  • Zhihui Li
    • 1
  • Shuhui Huang
    • 1
  • Xiwu Li
    • 1
  • Lizhen Yan
    • 1
  • Hongwei Yan
    • 1
  • Hongwei Liu
    • 1
  • Yongan Zhang
    • 1
  • Baiqing Xiong
    • 1
  1. 1.State Key Laboratory of Nonferrous Metals and ProcessesGeneral Research Institute for Nonferrous MetalsBeijingChina

Personalised recommendations