Skip to main content

Prognostics and Health Management

  • Chapter
  • First Online:
Book cover Risk-Based Engineering

Part of the book series: Springer Series in Reliability Engineering ((RELIABILITY))

Abstract

Nuclear power, with over 430 nuclear power plants (NPPs) operating around the world, is the source of about 17% of the world’s electricity. The nuclear industry has arrived at a point where it is dealing with two major issues. First, it must address life extension for legacy units while complying with present-day safety regulations. Second, new systems must be designed with enhanced safety features so that the core damage frequency meets the target of 10−6 failures per reactor-year or less.

The effectiveness to be aimed at calls for the application and refinement of all conceivable prognostic techniques for adding to knowledge of the future, including those which can be effectively developed over an ever-wider time scale.

—Fred Polak (1971) Prognostics, pp. 65–66

This chapter is a revised and updated version of paper entitled “Role of Prognostics in Support of Integrated Risk-based Engineering in Nuclear Power Plant Safety” by P. V. Varde and Michael Pecht (2002), published in the International Journal of Prognostics and Health Management (ISSN 2153-2648), PHM Society.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    PCA is identical to the traditional technique for multi-dimensional scaling called “classical scaling.”

  2. 2.

    A manifold is a topological space that locally resembles Euclidean space near each point. More precisely, each point of ann-dimensional manifold has a neighborhood that is homeomorphic to the Euclidean space of dimension. In this more precise terminology, a manifold is referred to as ann-manifold.

  3. 3.

    The classification task is further divided into a binary classification task and a multi-class classification task based on the number of classes it addresses. For example, if the diagnostic system is used to identify whether the product is healthy or not, this would be treated as a binary classification task. On the other hand, if the diagnostic system is used to pinpoint multiple failure modes or failure mechanisms of the product, this would be treated as a multi-class classification task.

  4. 4.

    The upper and lower failure thresholds can also be specified by standards, historical data, and so forth.

References

  1. International Atomic Energy Agency (IAEA), “Risk informed in-service inspection of piping systems of nuclear power plants: process, status, issues and development,” IAEA Nuclear Energy Series No. NP-T-3.1, 2010

    Google Scholar 

  2. International Atomic Energy Agency (IAEA), “Risk-based optimization of technical specifications for operation of nuclear power plants,” IAEA-TECDOC-729, 1993

    Google Scholar 

  3. A.C. Kadak, T. Matsuo, The nuclear industry’s transition to risk-informed regulation and operation in the United States. Rel. Eng. Syst. Safety 92(5), 609–618 (2007)

    Article  Google Scholar 

  4. M. Pecht, Prognostics and Health Management of Electronics (Wiley, Hoboken, 2008)

    Google Scholar 

  5. J. Coble, M. Humberstone, J. Wes Hines, Adaptive monitoring, fault detection and diagnostics, and prognostics system for the IRIS nuclear plant (pp. 1–10), in Proceedings of Annual Conference on the Prognostics and Health Management Society, Portland, OR, USA, 10–14 Oct 2010

    Google Scholar 

  6. K.R. Wheeler, T. Kurtoglu, S.D. Poll, A survey of health management user objectives in aerospace systems related to diagnostic and prognostic metrics. Int. J. Prognostics Health Manag. 1, 1–19 (2010)

    Google Scholar 

  7. P.W. Kalgren, M. Baybutt, A. Ginart, C. Minnella, M.J. Roemer, T. Dabney, Application of prognostic health management in digital electronic systems (pp. 1–9), in Proceedings of 2007 IEEE Aerospace Conference, Big Sky, MT, USA, 3–10 March 2007

    Google Scholar 

  8. J.K. Bhambra, S. Nayagam, I. Jennions, Electronic prognostics and health management of aircraft avionics using digital power converts (pp. 1–2), in Proceedings of Annual Conference of the Prognostics and Health Management Society, Montreal, Quebec, Canada, 25–29 September 2011

    Google Scholar 

  9. S. Mishra, S. Ganesan, M. Pecht, J. Xie, Life consumption monitoring for electronics prognostics (pp. 3455–3467), in Proceedings of 2004 IEEE Aerospace Conference, Big Sky, MT, USA, 6–13 March 2004

    Google Scholar 

  10. X. Guan, Y. Liu, R. Jha, A. Saxena, J. Celaya, K. Goebel, Comparison of two probabilistic fatigue damage assessment approaches using prognostic performance metrics. Int. J. Prognostics Health Manag. 2(1), 1–11 (2011)

    Google Scholar 

  11. R. Klein, E. Rudyk, E. Masad, M. Issacharoff, Model based approach for identification of gears and bearings failure modes. Int. J. Prognostics Health Manag. 2(2), 1–10 (2011)

    Google Scholar 

  12. K.-T. Wu, M. Kobayashi, Z. Sun, C.-K. Jen, P. Sammut, Engine oil condition monitoring using high temperature integrated ultrasonic transducers. Int. J. Prognostics Health Manag. 2(2), 1–7 (2011)

    Google Scholar 

  13. A. Saxena, K. Goebel, D. Simon, N. Eklund, Damage propagation modeling for aircraft engine run-to-failure simulation (pp. 1–9), in Proceedings of 2008 International Conference on Prognostics and Health Management, Denver, CO, USA, 6–9 October 2008

    Google Scholar 

  14. A. Tantawy, X. Koutsoukos, G. Biswas, Aircraft power generators: hybrid modeling and simulation for fault detection. IEEE Trans. Aerosp. Electron. Syst. 48(1), 552–571 (2012)

    Article  Google Scholar 

  15. C. Chen, M. Pecht, Prognostics of lithium-ion batteries using model-based and data-driven methods (pp. 1–6), in Proceedings of 2012 IEEE Conference on Prognostics and Health Management, Beijing, China, 23–25 May 2012

    Google Scholar 

  16. C. Chen, D. Brown, C. Sconyers, B. Zhang, G. Vachtsevanos, M.E. Orchard, An integrated architecture for fault diagnosis and failure prognosis of complex engineering systems. Expert Syst. Appl. 39(10), 9031–9040 (2012)

    Article  Google Scholar 

  17. L.J. Bond, S.R. Doctor, T.T. Taylor, Proactive management of materials degradation—a review of principles and programs, U.S. Department of Energy, PNNL-17779, 2008

    Google Scholar 

  18. International Atomic Energy Agency (IAEA), Living probabilistic safety assessment (LPSA), IAEA-TECDOC-1106, 1999

    Google Scholar 

  19. International Atomic Energy Agency (IAEA), Protecting against common cause failures in digital I&C systems of nuclear power plants, IAEA Nuclear Energy Series No. NP-T-1.5, 2009

    Google Scholar 

  20. F. Gregor, A. Chockie, Aging management and life extension in the US nuclear power industry, CGI Report Prepared for the Petroleum Safety Authority Norway, 2006

    Google Scholar 

  21. International Atomic Energy Agency (IAEA), Assessment and management of ageing of major nuclear power plant components important to safety: CANDU pressure tubes, IAEA-TECDOC-1037, 1998

    Google Scholar 

  22. S. Baskaran, Role of NDE in residual life assessment of power plant components, Available: http://www.ndt.net/article/v05n07/baskaran/baskaran.htm. Accessed 8 Nov 2017

  23. A. Coppe, R.T. Haftka, N.-H. Kim, C. Bes, A statistical model for estimating probability of crack detection (pp. 1–5), in Proceedings of 2008 International Conference on Prognostics and Health Management, Denver, CO, USA, 6–9 October 2008

    Google Scholar 

  24. J. Gu, N. Vichare, T. Tracy, M. Pecht, Prognostics implementation methods for electronics (pp. 101–106), in Proceedings of 2007 Annual Reliability and Maintainability Symposium, Orlando, FL, USA, 22–25 January 2007

    Google Scholar 

  25. S.M. Wood, D.L. Goodman, Return-on-investment (ROI) for electronic prognostics in high reliability telecom applications (pp. 1–3), in Proceedings of 28th Annual International Telecommunications Energy Conference, Providence, RI, USA, 10–14 September 2006

    Google Scholar 

  26. N.M. Vichare, M. Pecht, Prognostics and health management of electronics. IEEE Trans. Compon. Packag. Manuf. Technol. 29(1), 222–229 (2006)

    Article  Google Scholar 

  27. S.W. Yates, A. Mosleh, A Bayesian approach to reliability demonstration for aerospace systems (pp. 611–617), in Proceedings of Annual Reliability and Maintainability Symposium, Newport Beach, CA, USA, 23–26 January 2006

    Google Scholar 

  28. M. Modarres, M.P. Kaminskiy, V. Krivtsov, Reliability Engineering and Risk Analysis: A Practical Guide, 3rd edn. (CRC Press, Boca Raton, 2016)

    Google Scholar 

  29. M. White, J.B. Bernstein, Microelectronics reliability: physics-of-failure based modeling and lifetime evaluation. Jet Propulsion Laboratory Publication 08-5, 2008

    Google Scholar 

  30. N. Patil, J. Celaya, D. Das, K. Goebel, M. Pecht, Precursor parameter identification for insulated gate bipolar transistor (IBGT) prognostics. IEEE Trans. Rel. 58(2), 271–276 (2009)

    Article  Google Scholar 

  31. M. Pecht, A. Dasgupta, Physics-of-failure: an approach to reliable product development (pp. 1–4), in Proceedings of IEEE International Integrated Reliability Workshop, Lake Tahoe, CA, USA, 22–25 October 1995

    Google Scholar 

  32. K.C. Kapur, M. Pecht, Chapter 10. Failure modes, mechanisms, and effects analysis, in Reliability Engineering (Wiley, Hoboken, 2014)

    Google Scholar 

  33. H. Huang, P.A. Mawby, A lifetime estimation technique for voltage source inverters. IEEE Trans. Power Electron. 28(8), 4113–4119 (2013)

    Article  Google Scholar 

  34. M. Musallam, C. Yin, C. Bailey, C.M. Johnson, Application of coupled electro-thermal and physics-of-failure-based analysis to the design of accelerated life tests for power modules. Microelectron. Rel. 54(1), 172–181 (2014)

    Article  Google Scholar 

  35. L. Yang, P.A. Agyakwa, C.M. Johnson, Physics-of-failure lifetime prediction models for wire bond interconnects in power electronic modules. IEEE Trans. Devices Mater. Rel. 13(1), 9–17 (2013)

    Article  Google Scholar 

  36. E. Wong, W. Drieal, A. Dasgupta, M. Pecht, Creep fatigue models of solder joints: a critical review. Microelectron. Rel. 59, 1–12 (2016)

    Article  Google Scholar 

  37. C. Hendricks, E. George, M. Osterman, M. Pecht, M, Physics-of-failure (PoF) methodology for electronic reliability. Rel. Characterisation Electr. Electron. Syst. 27–42 (2015)

    Google Scholar 

  38. Y. Zhou, X. Li, C. Wang, R. Gao, A new creep-fatigue life model of lead-free solder joint. Microelectron. Rel. 55, 1097–1100 (2015)

    Article  Google Scholar 

  39. A. Dasgupta, R. Doraiswami, M. Azarian, M. Osterman, S. Mathew, M. Pecht, The use of “Canaries” for adaptive health management of electronic systems (pp. 176–183), in Proceedings of 2nd International Conference on Adaptive and Self-adaptive Systems and Applications, Lisbon, Portugal, 21–26 Nov 2010

    Google Scholar 

  40. A. Ramakrishnan, T. Syrus, M. Pecht, Chapter 22. Electronic hardware reliability, in Avionics Handbook (CRC Press, Boca Raton, 2000)

    Google Scholar 

  41. S. Mishra, M. Pecht, D.L. Goodman, In-situ sensors for product reliability monitoring, in Proceedings of SPIE 4755, Design, Test, Integration, and Packaging of MEMS/MOEMS, 19 April 2022

    Google Scholar 

  42. Ridgetop Semiconductor-Sentinel SiliconTM Library, Hot Carrier (HC) Prognostic Cell, 2004

    Google Scholar 

  43. K.C. Kapur, M. Pecht, Reliability Engineering (Wiley, Hoboken, 2014)

    Google Scholar 

  44. D. Rizopoulos, Joint Models for Longitudinal and Time-to-Event Data: With Applications in R (Chapman and Hall/CRC, UK, 2012)

    Book  Google Scholar 

  45. N. Anderson, R. Wilcoxon, Framework for prognostics of electronic systems, in Proceedings of International Military and Aerospace/Avionics COTS Conference, Seattle, WA, USA, 3–5 Aug 2004

    Google Scholar 

  46. B. Tuchband, N. Vichare, M. Pecht, A method for implementing prognostics to legacy systems, in Proceedings of IMAPS Military, Aerospace, Space and Homeland Security: Packaging Issues and Applications (MASH), Washington, D.C., USA, 6–8 June 2006

    Google Scholar 

  47. S. Lombardo, J.H. Stathis, B.P. Linder, K.L. Pey, F. Palumbo, C.H. Tung, Dielectric breakdown mechanisms in gate oxides. J. Appl. Phys. 98(12, 121301) (2005)

    Article  Google Scholar 

  48. N. Raghavan, K.L. Pey, K. Shubhakar, High-κ dielectric breakdown in nanoscale logic devices-scientific insight and technology impact. Microelectron. Rel. 54(5), 847–860 (2014)

    Article  Google Scholar 

  49. E.T. Ogawa, A.J. Bierwag, K.D. Lee, H. Matsuhashi, P.R. Justison, A.N. Ramamurthi, P.S. Ho, V.A. Blaschke, D. Griffiths, A. Nelsen, M. Breen, Direct observation of a critical length effect in dual-damascene Cu/oxide interconnects. Appl. Phys. Lett. 78(18), 2652–2654 (2011)

    Article  Google Scholar 

  50. N. Raghavan, A. Padovani, X. Li, X. Wu, V. Lip Lo, M. Bosman, L. Larcher, K. L. Pey, Resilience of ultra-thin oxynitride films to percolative wear-out and reliability implications for high-κ stacks at low voltage stress. J. Appl. Phys. 114( 9, 094504) (2013)

    Article  Google Scholar 

  51. C. Chen, G. Vachtsevanos, Bearing condition prediction considering uncertainty: an interval type-2 fuzzy neural network approach. Robot. Comput. Integ. Manuf. 28(4), 509–516 (2012)

    Article  Google Scholar 

  52. A.K.S. Jardine, D. Lin, D. Banjevic, A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech. Syst. Signal Process. 20(7), 1483–1510 (2006)

    Article  Google Scholar 

  53. M. Kang, J. Kim, L.M. Wills, J.-M. Kim, Time-varying and multiresolution envelope analysis and discriminative feature analysis for bearing fault diagnosis. IEEE Trans. Ind. Electron. 62(12), 7749–7761 (2015)

    Article  Google Scholar 

  54. M. Yang, V. Makis, ARX model-based gearbox fault detection and localization under varying load conditions. J. Sound Vib. 329(24), 5209–5221 (2010)

    Article  Google Scholar 

  55. H. Li, H. Zheng, L. Tang, Gear fault diagnosis based on order cepstrum analysis. J. Vib. Shock 25(5), 65–68 (2006)

    Google Scholar 

  56. C.L. Nikias, J.M. Mendel, Signal processing with higher order spectra. IEEE Signal Process. Mag. 10(3), 10–37 (1993)

    Article  Google Scholar 

  57. L. Qu, Y. Chen, J. Liu, The holospectrum: a new FFT based rotor diagnostic method (pp. 196–201), in Proceedings of 1st International Machinery Monitoring and Diagnostics Conference, Las Vegas, NV, USA, 11–14 September 1989

    Google Scholar 

  58. J. Jin, J. Shi, Feature-preserving data compression of stamping tonnage information using wavelets. Technometrics 41(4), 327–339 (1999)

    Article  Google Scholar 

  59. J. Jin, J. Shi, Automatic feature extraction of waveform signals for in-process diagnostic performance improvement. J. Intell. Manuf. 12(3), 257–268 (2001)

    Article  Google Scholar 

  60. H. Zheng, Z. Li, X. Chen, Gear fault diagnosis based on continuous wavelet transform. Mech. Syst. Signal Process. 16(2–3), 447–457 (2002)

    Article  Google Scholar 

  61. N.G. Nikolaou, I.A. Antoniadis, Rolling element bearing fault diagnosis using wavelet packets. NDT E Int. 35(3), 197–205 (2002)

    Article  Google Scholar 

  62. J. Lin, L. Qu, Feature extraction based on Morlet wavelet and its application for mechanical fault diagnosis. J. Sound Vib. 234(1), 135–148 (2000)

    Article  Google Scholar 

  63. F. Leonard, Phase spectrogram and frequency spectrogram as new diagnostic tools. Mech. Syst. Signal Process. 21(1), 125–137 (2007)

    Article  Google Scholar 

  64. Q. Meng, L. Qu, Rotating machinery fault diagnosis using wigner distribution. Mech. Syst. Signal Process. 5(3), 155–166 (1991)

    Article  Google Scholar 

  65. W.J. Staszewski, K. Worden, G.R. Tomlinson, Time-frequency analysis in gearbox fault detection using the Wigner-Ville distribution and pattern recognition. Mech. Syst. Signal Process. 11(5), 673–692 (1997)

    Article  Google Scholar 

  66. N. Baydar, A. Ball, A comparative study of acoustic and vibration signals in detection of gear failures using Wigner-Ville distribution. Mech. Syst. Signal Process. 15(6), 1091–1107 (2001)

    Article  Google Scholar 

  67. S.U. Lee, D. Robb, C. Besant, The directional Choi-Williams distribution for the analysis of rotor-vibration signals. Mech. Syst. Signal Process. 15(4), 789–811 (2001)

    Article  Google Scholar 

  68. K. Fukunaga, Introduction to Statistical Pattern Recognition (Academic Press Professional Inc, San Diego, 1990)

    MATH  Google Scholar 

  69. S. Wold, K. Esbensen, P. Geladi, Principal component analysis. Chemometrics Intell. Lab. Syst. 2(1–3), 37–52 (1987)

    Article  Google Scholar 

  70. B. Scholkopf, A. Smola, K.-R. Muller, Kernel principal component analysis. Lect. Notes Comput. Sci. 1327, 583–588 (1997)

    Article  Google Scholar 

  71. A.J. Izenman, “Linear Discriminant Analysis”, in Modern Multivariate Statistical Techniques (Springer, New York, 2013), pp. 237–280

    Book  Google Scholar 

  72. J.B. Tenenbaum, Mapping a manifold of perceptual observations (pp. 682–688), in Proceedings of 1997 Conference on Advances in Neural Information Processing Systems, Denver, CO, USA, 1–6 December 1997

    Google Scholar 

  73. E.W. Dijkstra, A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959)

    Article  MathSciNet  Google Scholar 

  74. R.W. Floyd. Algorithm 97: shortest path. Commun. ACM 5(6), 345 (1962)

    Article  Google Scholar 

  75. T. Kohonen, Self-organizing Maps (Springer, Berlin, 1995)

    Book  Google Scholar 

  76. R.D. Lawrence, G.S. Almasi, H.E. Rushmeier, A scalable parallel algorithm for self-organizing maps with applications to sparse data problems. Data Mining Knowl. Discovery 3(2), 171–195 (1999)

    Article  Google Scholar 

  77. B. Li, P.-L. Zhang, H. Tian, S.-S. Mi, D.-S. Liu, G.-Q. Ren, A new feature extraction and selection scheme for hybrid fault diagnosis of gearbox. Expert Syst. Appl. 38, 10000–10009 (2011)

    Article  Google Scholar 

  78. C. Liu, D. Jiang, W. Yang, Global geometric similarity scheme for feature selection in fault diagnosis. Expert Syst. Appl. 41, 3585–3595 (2014)

    Article  Google Scholar 

  79. Y. Yang, Y. Liao, G. Meng, J. Lee, A hybrid feature selection scheme for unsupervised learning and its application in bearing fault diagnosis. Expert Syst. Appl. 38, 11311–11320 (2011)

    Article  Google Scholar 

  80. J. Yang, V. Honavar, Feature subset selection using a genetic algorithm. IEEE Intell. Syst. Appl. 13(2), 44–49 (1998)

    Article  Google Scholar 

  81. T. Abeel, T. Helleputte, Y. Van de Peer, P. Dupont, Y. Saeys, Robust biomarker identification for cancer diagnosis with ensemble feature selection methods. Bioinformatics 26(3), 392–398 (2009)

    Article  Google Scholar 

  82. N. Meinshausen, P. Bühlmann, Stability selection, J.R. Stat. Soc. Ser. B Stat. Methodol. 72(4), 417–473 (2010)

    Google Scholar 

  83. R. Milne, Strategies for diagnosis. IEEE Trans. Syst. Man, Cybern. 17(3), 333–339 (1987)

    Article  MathSciNet  Google Scholar 

  84. S.H. Rich, V. Venkatasubramanian, Model based reasoning in diagnostic expert systems for chemical process plants. Comput. Chem. Eng. 11(2), 111–122 (1987)

    Article  Google Scholar 

  85. V. Venkatasubramanian, R. Rengaswamy, S.N. Kavuri, A review of process fault detection and diagnosis: part II: qualitative models and search strategies. Comput. Chem. Eng. 27(3), 313–326 (2003)

    Article  Google Scholar 

  86. V. Venkatasubramanian, R. Rengaswamy, S.N. Kavuri, K. Yin, A review of process fault detection and diagnosis: part III: process history based methods. Comput. Chem. Eng. 27(3), 327–346 (2003)

    Article  Google Scholar 

  87. V. Venkatasubramanian, R. Rengaswamy, K. Yin, S.N. Kavuri, A review of process fault detection and diagnosis: part I: quantitative model-based methods. Comput. Chem. Eng. 27(3), 293–311 (2003)

    Article  Google Scholar 

  88. T. Wang, J. Yu, D. Siegel, J. Lee, A similarity-based prognostics approach for remaining useful life estimation of engineered systems, in Proceedings International Conference on Prognostics and Health Management, Denver, CO, USA, 6–9 Oct 2008

    Google Scholar 

  89. E. Zio, F. Di Maio, A Data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear system. Rel. Eng. Syst. Safety 1, 49–57 (2010)

    Article  Google Scholar 

  90. J.B. Coble, J.W. Hines, Prognostic algorithm categorization with PHM challenge application, in Proceedings of International Conference on Prognostics and Health Management, Denver, CO, USA, 6–9 Oct 2008

    Google Scholar 

  91. F.O. Heimes, Recurrent neural networks for remaining useful life estimation, in Proceedings of International Conference on Prognostics and Health Management, Denver, CO, USA, 6–9 Oct 2008

    Google Scholar 

  92. M.E. Tipping, Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 1, 211–244 (2001)

    MathSciNet  MATH  Google Scholar 

  93. A.J. Smola, B. Scholkopf, A tutorial on support vector regression. Stats. Comput. 14(3), 199–222 (2004)

    Article  MathSciNet  Google Scholar 

  94. M. Ernansky, M. Kakula, U. Benuskova, Organization of the state space of a simple recurrent network before and after training on recursive linguistic structures. Neural Netw. 20(2), 236–244 (2007)

    Article  Google Scholar 

  95. D.W. Hosmer, Jr., S. Lemeshow, R.X. Sturdivant, Chapter 9. Logistic regression models for the analysis of correlated data, in Applied Logistic Regression, 3rd ed. (Wiley, Hoboken, 2013)

    Google Scholar 

  96. M. Pecht, R. Jaai, A prognostics and health management roadmap for information and electronics-rich systems. Microelectron. Rel. 50, 317–323 (2010)

    Article  Google Scholar 

  97. P. Tamilselvan, P. Wang, Failure diagnosis using deep belief learning based health state classification. Rel. Eng. Syst. Safety 115, 124–135 (2013)

    Article  Google Scholar 

  98. S. Cheng, M. Pecht, A fusion prognostics method for remaining useful life prediction of electronic products, in Proceedings of IEEE International Conference on Automation Science and Engineering, Bangalore, India, 22–25 Aug 2009

    Google Scholar 

  99. S. Sankararaman, Significance, interpretation, and qualification of uncertainty in prognostics and remaining useful life prediction. Mech. Syst. Signal Process. 52–53, 228–247 (2015)

    Article  Google Scholar 

  100. H. McManus, D. Hastings, A framework for understanding uncertainty and its mitigation and exploitation in complex systems (pp. 1–20), in Proceedings 15th Annual International Symposium of the International Council on Systems Engineering, Rochester, NY, USA, 10–15 July 2005

    Google Scholar 

  101. M. Orchard, G. Kacprzynski, K. Goebel, B. Saha, G. Vachtsevanos, Advances in uncertainty representation and management for particle filtering applied to prognostics (pp. 1–6), in Proceedings International Conference on Prognostics and Health Management, Denver, CO, USA, 6–9 Oct 2008

    Google Scholar 

  102. L. Tang, G.J. Kacprzynski, K. Goebel, G. Vachtsevanos, Methodologies for uncertainty management in prognostics (pp. 1–12), in Proceedings Aerospace Conference, Big Sky, MT, USA, 7–14 March 2009

    Google Scholar 

  103. J.R. Celaya, A. Saxena, K. Goebel, Uncertainty representation and interpretation in model-based prognostics algorithms based on Kalman filter estimation (pp. 23–27), in Proceedings of Annual Conference of the PHM Society, Minneapolis, MN, USA, 23–27 September 2012

    Google Scholar 

  104. M. Reiner, D.D. Lev, A. Rosen, Theta neurofeedback effects on motor memory consolidation and performance accuracy: an apparent paradox? Neurosci. (2017)

    Google Scholar 

  105. E.L. Lehmann, G. Casella, Theory of Point Estimation, 2nd edn. (Springer, New York, 1998)

    MATH  Google Scholar 

  106. A. Saxena, J. Celaya, E. Balaban, K. Goebel, B. Saha, S. Saha, M. Schwabacher, Metrics for evaluating performance of prognostic techniques (pp. 1–17), in Proceedings of International Conference on Prognostics and Health Management, Denver, CO, USA, 6–9 Oct 2008

    Google Scholar 

  107. D. Puccinelli, M. Haenggi, Wireless sensor networks: applications and challenges of ubiquitous sensing. IEEE Circ. Syst. Mag. 5(3), 19–31 (2005)

    Article  Google Scholar 

  108. R. Lin, Z. Wang, Y. Sun, Wireless sensor networks solutions for real time monitoring of nuclear power plant, in Proceedings of 5th World Congress on Intelligent Control and Automation, Hangzhou, China, 15–19 June 2004

    Google Scholar 

  109. D. Bhattacharyya, T.-H. Kim, S. Pal, A comparative study of wireless sensor networks and their routing protocols. Sensors 10(12), 10506–10523 (2010)

    Article  Google Scholar 

  110. International Atomic Energy Agency (IAEA), Proactive management of ageing for nuclear power plants, Safety Reports Series No. 62, 2009

    Google Scholar 

  111. PHM-Prognostics and Health Management of Electronic Systems, Available: https://standards.ieee.org/develop/wg/PHM.html. 8 Nov 2017

  112. N. Dharmaraju, A. Rama Rao, Dynamic analysis of coolant channel and its internals of Indian 540 MWe PHWR reactor. Sci. Technol. Nucl. Install. 2008(764301), 1–7 (2008)

    Article  Google Scholar 

  113. K. Chatterjee, M. Modarres, A probabilistic physics-of-failure approach to prediction of steam generator tube rupture frequency. Nucl. Sci. Eng. 170(2), 136–150 (2012)

    Article  Google Scholar 

  114. A. Andonov, K. Apostolov, M. Kostov, G. Varbanov, Structural health monitoring of VVER-1000 containment structure (pp. 1–8), in 21st International Conference on Structural Mechanics in Reactor Technology (SMiRT 21), New Delhi, India, 6–11 Nov 2011

    Google Scholar 

  115. J. Coble, P. Ramuhalli, L.J. Bond, B.R. Upadhyaya, Prognostics and health management in nuclear power plants: a review of technologies and applications, U.S. Department of Energy, PNNL-21515, 2012

    Google Scholar 

  116. A. Heng, S. Zhang, A.C.C. Tan, J. Mathew, Rotating machinery prognostics: state of the art, challenges and opportunites. Mech. Syst. Signal Process. 23(3), 724–739 (2009)

    Article  Google Scholar 

  117. C. Yin, H. Lu, M. Musallam, C. Bailey, C.M. Johnson, Prognostic reliability analysis of power electronics modules. Int. J. Performability Eng. 6(5), 513–524 (2010)

    Google Scholar 

  118. H. Ye, C. Basaran, D.C. Hopkins, Experimental damage mechanics of micro/power electronics solder joints under electric current stresses. Int. J. Damage Mech. 15(1), 41–67 (2006)

    Article  Google Scholar 

  119. H. M. Hashemian, On-line monitoring and calibration techniques in nuclear power plants (pp. 1–11), in Proceedings of International Conference on Opportunities and Challenges for Water Cooled Reactors in the 21st Century, Vienna, Austria, 27–30 Oct 2009

    Google Scholar 

  120. I. Snook, J.M. Marshal, R.M. Newman, Physics of failure as an integrated part of design for reliability (pp. 46–54), in Proceedings of 2003 Annual Reliability and Maintainability Symposium, 27–30 January 2003

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabhakar V. Varde .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Varde, P.V., Pecht, M.G. (2018). Prognostics and Health Management. In: Risk-Based Engineering. Springer Series in Reliability Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-0090-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0090-5_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0088-2

  • Online ISBN: 978-981-13-0090-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics